

Marcio Ricardo Rosemberg

SRAP - A New Authentication Protocol for Semantic Web
Applications

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-

Graduação em Informática of the Departamento de

Informática, PUC-Rio as partial fulfillment of the

requirements for the degree of Mestre em

Informática.

Advisor: Prof. Marcus Vinícius Soledade Poggi de Aragão

Co-Advisor: Prof. Daniel Schwabe

Rio de Janeiro

June 2014

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

Marcio Ricardo Rosemberg

SRAP – A New Authentication Protocol for Semantic Web
Applications

Dissertation presented to the Programa de Pós-
Graduação em Informática of the Departamento de
Informática, PUC-Rio as partial fulfillment of the
requirements for the degree of Mestre em Informática.
Approved by the following commission.

Prof. Marcus Vinícius Soledade Poggi de Aragão
Advisor

Departamento de Informática – PUC-Rio

Prof. Daniel Schwabe
Co-Advisor

Departamento de Informática – PUC-Rio

Prof. Ricardo Dahab
UNICAMP

Prof. Sérgio Lifschitz
Departamento de Informática – PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Científico – PUC-Rio

Rio de Janeiro, June 16th, 2014

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

All rights reserverd.

Marcio Ricardo Rosemberg

BSc. Electrical Engineering (Universidade Santa Úrsula) – 1990. Partner and

founder of SYSNET Sistemas e Redes – 1994, a company that specializes in

networking, network security, and development of custom software. The author

has been asked several times to provide consulting as an expert for judges on

several lawsuits.

Rosemberg, Marcio Ricardo

 SRAP – a new authentication protocol for semantic Web applications /
Marcio Ricardo Rosemberg; advisor: Marcus Vinicius Soledade Poggi de
Aragão; co-advisor: Daniel Schwabe. – 2014.
 103 f : il. (color.) ; 30 cm

 Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro,
Departamento de Informática, 2014.
 Inclui bibliografia

 1. Informática – Teses. 2. Web semântica. 3. Autenticação. 4.
Criptografia. 5. Controle de acesso. I. Aragão, Marcus Vinicius Soledade Poggi
de. II. Schwabe, Daniel. III. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

This work is dedicated to my grandmother, Fany Bass Rosemberg Z’L.

Thank you for everything, Faigel.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

Acknowledgments

To my advisor, Professor Marcus Poggi and to my co-advisor Professor Daniel

Schwabe for their support, patience and teachings.

To Professor Ricardo Dahab for his expert collaboration and for his acceptance to

be a member of the jury.

To Professor Sérgio Lifschitz for his teachings and encouragement.

To the other professors of the Departamento de Informática of PUC-Rio.

To my parents Neide e Roberto for their love and support.

To my wife Adriana for her love and incentive.

To my sister Sandra for her caring.

To my daughter Nicole, the joy of my life, who inspires and give me strength.

To my colleagues from SYSNET, especially Mr. Leandro Barreto.

To all my friends in PUC-Rio

To all other people who helped me directly or indirectly

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

Abstract

Rosemberg, Marcio Ricadro; de Aragão , Marcus Vinicius Soledade Poggi

(advisor); Schwabe, Daniel (co-advisor). SRAP - A New Authentication

Protocol for Semantic Web Applications. Rio de Janeiro, 2014. 103p.

MSc. Dissertation – Departamento de Informática, Pontifícia Universidade

Católica do Rio de Janeiro.

Usually, Linked Data makes Semantic Web Applications query much more

information for processing than traditional Web applications. Since not all

information is public, some form of authentication may be imposed on the user.

Querying data from multiple data sources might require many authentication

prompts. Such time consuming operations, added to the extra amount of time a

Semantic Web application needs to process the data it collects might be frustrating

to the users and should be minimized. The purpose of this thesis is to analyze and

compare several Semantic Web authentication techniques available, leading to the

proposal of a faster and more secure authentication protocol for Semantic Web

Applications.

Keywords

Semantic Web; Authentication; Cryptography; Access Control.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

Resumo

Rosemberg, Marcio Ricardo; de Aragão, Marcus Vinicius Soledade;

Schwabe, Daniel. SRAP – Um Novo Protocolo para Autenticação em

Aplicações Voltadas para Web Semântica. Rio de Janeiro, 2014. 103p.

Dissertação de Mestrado – Departamento de Informática, Pontifícia

Universidade Católica do Rio de Janeiro.

Normalmente, aplicações semânticas utilizam o conceito de “linked data”,

onde é possível obter dados de diversas fontes e em múltiplos formatos. Desta

forma, as aplicações semânticas processam muito mais dados do que as aplicações

tradicionais. Uma vez que nem todas as informações são públicas, alguma forma

de autenticação será imposta ao usuário. Consultar dados de múltiplas fontes pode

requerer muitos pedidos de autenticação, normalmente através de uma

combinação de conta de usuário e senha. Tais operações consomem tempo e,

considerando-se o tempo extra que uma aplicação semântica leva para processar

os dados coletados, pode tornar a experiência frustrante e incômoda para os

usuários, devendo ser minimizado, sempre que possível. O propósito desta

dissertação é o de analisar e comparar as técnicas de autenticação disponíveis para

as aplicações semânticas e propor um protocolo mais rápido e mais seguro para

autenticação em aplicações semânticas.

Palavras-chave

Web Semântica; Autenticação; Criptografia; Controle de Acesso.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

Contents

1 Introduction 12

1.1. The problem 12

1.2. The State of the Art 13

1.3. Motivation 14

1.4. Goals and Contributions 15

2 Foundations 16

2.1. Information Security Fundamentals 16

2.1.1. Confidentiality 16

2.1.2. Integrity 16

2.1.3. Availability 17

2.1.4. Authenticity 17

2.1.5. Non-repudiation 17

2.2. Access Control 18

3 Cryptography and Attacks on Authentication 19

3.1. Algorithms and Keys 21

3.2. Symmetric Algorithms 21

3.3. Asymmetric Algorithms 22

3.4. Digital Signatures 22

3.5. The Diffie-Hellman Key Exchange Cryptosystem 24

3.6. The RSA Cryptosystem 25

3.7. Attacks on Authentication Protocols 26

3.7.1. Eavesdropping 26

3.7.2. Modification 26

3.7.3. Replay 27

3.7.4. Preplay 27

3.7.5. Reflection 27

3.7.6. Denial of Service 28

3.7.7. Typing Attacks 28

3.7.8. Cryptanalysis 29

3.7.9. Certificate Manipulation 29

3.7.10. Protocol Interaction 30

3.8. Eliminating the Eavesdropper, providing authentication and
 Non-repudiation 30

3.9. Public Key Infrastructure (PKI) 32

3.10. Single Sign On 34

4 Semantic Web Concepts and Technologies 36

4.1. RDF 36

4.1.1. RDF as a Graph 38

4.2. SPARQL Language 40

4.3. Linked Data 41

5 Authentication Techniques 42

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

5.1. OpenID 42

5.2. OAuth 2.0 44

5.3. TLS (Transport Layer Security) 46

5.3.1. Disrupting TLS 48

5.4. WebID (formerly known as FOAF+SSL) 50

5.4.1. Requesting Client Certificates 53

5.4.2. Processing the WebID Profile 54

5.4.3. Verifying the WebID Claim 54

5.4.4. WebID Access Control 56

5.4.5. WebId Analysis 57

6 Secure RDF Authentication Protocol (SRAP) 58

6.1. Architecture of the SRAP protocol 58

6.1.1. Step 1: Establishment of a presumed secure communications
channel 59

Step 2: Server identity verification 60

Step 3: Client identity verification 61

Step 4: Session key renegotiation 62

Step 5: Certificate storage 63

6.1.2. Second and subsequent authentications with
cached certificates 63

6.1.3. Second and subsequent authentications
with fast negotiation option 65

6.2. RDFK Details 65

6.3. SRAP Vulnerability Analysis 67

6.3.1. SRAP Resilience Against Eavesdropping Attacks 69

6.3.2. SRAP Resilience Against Modification Attacks 69

6.3.3. SRAP Resilience Against Replay, Preplay
and Reflection Attacks 69

6.3.4. SRAP Resilience Against DoS and DDoS Attacks 70

6.3.5. SRAP Resilience Against Typing Attacks 70

6.3.6. SRAP Resilience Against Cryptanalysis Attacks 70

6.3.7. SRAP Resilience Against Certificate Manipulation 70

6.3.8. SRAP Resilience Against Protocol Interaction 71

6.4. SRAP Performance 71

6.5. SRAP Cost Effectiveness 83

6.6. SRAP Advantages 86

7 Conclusions and Future Works 88

Attachment 1 – Network Operations Report 89

Attachment 2 – Source Codes of the Experiments 95

Diffie-Hellman Experiment 95

RSA Encryption and Decryption Experiment 96

AES 256 Encryption and Decryption Experiment 97

SHA-256 Hash Experiment 98

8 Bibliographic References 99

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

List of Figures

Figure 1 - Encrypting and Decrypting 19
Figure 2 – The eavesdropper 20
Figure 3 – Man in the middle attack 20
Figure 4 – Symmetric Encryption 22
Figure 5 – Asymmetric Encryption 22
Figure 6 – Creating a digital signature 23
Figure 7 – Verifying a digital signature 23
Figure 8 – Public Key Infrastructure 32
Figure 9 – Single Sign On 35
Figure 10 – RDF statements and their corresponding graph 39
Figure 11 – Phishing Attack 43
Figure 12 – Oauth 2.0 protocol flow 44
Figure 13 – OpenId and OAuth comparison 45
Figure 14 – Mutual TLS Authentication using client

and server certificates 46
Figure 15 – Disrupting TLS in a one way authentication 49
Figure 16 – Disrupting TLS in a two way authentication 49
Figure 17 – WebID Authentication 51
Figure 18 – SRAP Architecture 59
Figure 19 – Step 1 – Diffie-Hellman key exchange 59
Figure 20 – Step 2 – Server authentication 61
Figure 21 – Authentication Partner of Last Resort (APLR) 61
Figure 22 – Steps 3 and 4 – Client Authentication and session key

renegotiation 62
Figure 23 – Second and subsequent times authentication

with enhanced security 64
Figure 24 – SRAP with Fast Negotiation 65
Figure 25 – Example of a RDFK file for a server 67
Figure 26 – TLS Sequence 74
Figure 27 – Protocol performance comparison with multiple network

latency times 81
Figure 28 – SRAP cost effectiveness for computer 1 85
Figure 29 – SRAP cost effectiveness for computer 2 85
Figure 30 – SRAP cost effectiveness for computer 3 85

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

List of Tables

Table 1 – Operations for TLS mutual authentication with
client and server certificates 73

Table 2 – Operations for WebID fetching client RDF via HTTP 75
Table 3 – Operations for WebID fetching client RDF via HTTPS 75
Table 4 – Operations for WebID best case scenario 76
Table 5 – Operations for SRAP 1st time authentication

using AP of last resort 77
Table 6 – SRAP 1st time authentication using a trusted AP 78
Table 7 – SRAP authentication with client certificate

removed from server cache 79
Table 8 – SRAP 2nd and subsequent authentications,

certificate in server cache with enhanced security option 79
Table 9 – SRAP 2nd and subsequent authentications,

certificate in server cache with fast negotiation option 79
Table 10 – Protocol Summary Table 80
Table 11 – Protocol Summary for computer 2 82
Table 12 – Protocol Summary for Computer 3 83

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

12

1
Introduction

The traditional Web based applications focus on dissemination of information

as their paradigm. The Semantic Web focuses on dissemination of knowledge

instead. In order to achieve such a goal, Semantic Web applications rely on

machine readable data descriptions based on vocabularies, ontologies and Linked

Data [
1
].

Machine readable vocabularies give computers the ability to interpret the

information, filtering it based on the semantic specified by the user through

domain models.

Linked Data [
2
] gives a Semantic Web application the ability to query data

from multiple sources in a form that is transparent to the user. Linked data works

in tandem with machine-readable vocabularies.

A central concept in the Semantic Web is the Uniform Resource Identifier

(URI) [
3
]. URIs allows the unique identification of objects, object properties,

location of files and other resources. Anything can be represented by a URI.

Besides, URIs give us the ability to represent and store data in the form of a

graph. Graphs can be explored and navigated. Irrelevant information can be

filtered in the navigation process.

Semantic Web uses semi structured data [
4
] to present information. One of the

advantages of using semi structured data and URIs is that it allows us to integrate

multiple sources of data, since schema data is also encoded as data.

Since not all published information is public, some form of authentication is

required. Because Linked Data queries information from multiple sources, at first,

multiple authentications may be imposed on the user. Such an imposition would

frustrate the user adding even more time to the processing of his/hers requests.

1.1.
The problem

Authentication is necessary whenever the information or knowledge that is

being disclosed is sensitive. Before a server or a resource provider presents

sensitive information, such as users’ personal information, or if a user puts

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

13

his/hers credit card information in a web form, the endpoints involved need to be

confident they are really communicating with who they are supposed to be.

Authentication provides identity confirmation and servers as a basis to

establish trust. Since information is a major asset to any business or organization,

it is paramount to ensure integrity and safety of the data such an organization

receives and stores. Authentication helps an organization to identify whom they

are dealing with and that the information received is trustworthy. The same is true

on the side of the end user. The end user wants to be sure he/she can trust the web

site or the server, before revealing classified or sensitive information. This is true

with any type of application, including Semantic Web ones.

Since Semantic Web applications may query information from many

independent sources and users may have different identities for different

resources, the entire authentication process might consume a long time.

The application must be capable of correctly authenticating itself with the

right identity for the right resource provider automatically whenever possible.

The financial cost to deploy and maintain an authentication protocol must not

exceed the cost of data loss.

Most importantly: the user’s credentials must not be copied or tampered by

attackers during the authentication process.

1.2.
The State of the Art

The Transport Layer Security (TLS) [
I
] protocol is currently the state of the

art in authentication and confidentiality. It is mature, widely used by social

networks, webmail providers, financial organizations and government institutions.

TLS supports digital certificates for client authentication although it is seldom

used, mostly because of the monetary cost to acquire digital certificates.

The WebID [
II
] protocol, which uses TLS as part of its solution, allows self-

issued client certificates and uses URIs to uniquely identify users but the

computational cost is even higher than TLS and it is not as safe as TLS.

I
 Transport Layer Security – RFC 5246

II
 Former Foaf + SSL – W3C

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

14

The idea of using URIs to identify users has some advantages. Besides

uniquely identifying a user, it also provides an address where it is possible to fetch

user data that can be used to prove the user’s identity.

For authentication purposes, combining semi structured data already present

in Semantic Web and in digital certificates is also a good idea, because we can

extend vocabularies. We can put more data for authentication purposes, such as an

encrypted biometric template; new encryption algorithms may be written and

added to the supported encryption algorithm set; specialized required hardware for

authentication, such as a smartcard reader, can be integrated with the

authentication process by adding more properties to existing vocabularies. If

necessary, an organization can create its own authentication scheme different from

any standard. In addition, the extended vocabularies can provide the basis for

more semantic authentication policies, such as “authorize anyone who knows

person X and has been admitted before date D”.

1.3.
Motivation

Most frequently, the authentication process involves a username (user

account) / password combination and many times a single user has several

different user accounts and passwords, which require the user to memorize (and

later forget), write on a piece of paper or store such sensitive information on a

“presumed” safe media.

In order to circumvent this problem, Single Sign On, which is the property of

a user to present his credentials only once and gain access to all systems or

information he or she has adequate (See 3.10), techniques and protocols, such as

OpenID (See 5.1) and OAuth (See 5.2), were been developed, to diminish the

need to type user accounts frequently. However, they are vulnerable to social

engineering attacks and they do not completely solve the problem of the need for

multiple identities.

Digital certificates provide an easier and safer way for authentication. If the

user has multiple certificates installed, a simple prompt to choose one of the

certificates for authentication would be enough to complete the process.

The problem with digital certificates is that they are expensive for an end user

to obtain and maintain, they have a limited lifetime and the computational costs

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

15

are high, which becomes an issue for mobile devices. Because of these problems,

digital certificates for client authentication are not often used.

Digital certificates use the X.509 standard. The X.509 standard, like Semantic

Web metadata, is composed of semi structured data [
5
]. Semi structured data helps

the authentication process, because it gives options, such as a collection of

supported authentication protocols, minimum encryption key size, the digital

signature algorithm used to validate the certificate, the certificate valid time frame

the parameters of the public key (each protocol has a different set of parameters)

and more.

The motivation for this work is the proposal of a new authentication protocol

with the following requirements:

 A protocol that could be as difficult to break as TLS

 A protocol with little dependencies on Certificate Authorities (CAs)

(Parties should be able to issue self-signed certificates without

compromising security)

 A protocol with active trusted third party participation in order to

make active attacks more difficult to perform, meaning that the trusted

third party is actively contacted in order to authenticate the parties.

 A protocol capable of providing Single Sign On even in non-federated

networks, eliminating multiple user / password prompts.

 A protocol faster (less computational cost) than TLS

 A protocol with low financial cost to deploy

1.4.
Goals and Contributions

The purpose of this work is the analysis and comparison of Semantic Web

authentication techniques available and a proposal of a fast and reliable technique

for Semantic Web.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

16

2
Foundations

2.1.
Information Security Fundamentals

According to International Standards (ISO/IEC 17799:2005) the key concepts

in information security [
6
] are:

2.1.1.
Confidentiality

Property preventing the disclosure of information to unauthorized individuals

or systems. Semantic applications query data from multiple sources and different

formats. Besides, Linked Data exploration may direct the application to sensitive

data, not available to the general public. Such data may require the application to

provide a secure communications channel or to receive data encrypted at the

source. In the latter case, the application would only be able to make use of the

information with the proper decryption key

2.1.2.
Integrity

Property that maintains and assures the accuracy and consistency of the

information over its entire life cycle (birth, maintenance and destruction). The

integrity property must guarantee that the information has not been modified

while in transit from the server to the application and vice-versa. The network

environment between servers and applications must provide the means to ensure

data integrity while in transit. In the Semantic Web domain, Integrity also helps to

enforce Trust. How can an application trust data whose integrity cannot be

verified?

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

17

2.1.3.
Availability

This property guarantees that the information in always available to the

authorized users. In the Semantic Web domain, availability is paramount. Because

of linked data exploration, large volumes of data come from different locations

and resources. If availability is not guaranteed, the application will have slow

response times or it won’t be able to retrieve all the data required, resulting in

frustration for the users. Semantic Web applications usually cache large amounts

of remote data, the same way a proxy server does, to improve availability. Some

applications download entire databases to a local repository to improve

availability and performance.

2.1.4.
Authenticity

Complementing the Integrity property, authenticity must provide a way to

check if the information is genuine. It is also important for authenticity to validate

that both parties involved are who they claim to be. This is accomplished by

encryption, digital signature algorithms which form a digital certificate. In the

Semantic Web domain, where authenticity check may be required on multiple

sources, authenticity must be done in a very quick way. If it takes too long to

check the authenticity of the parties and the information, the availability property

would be compromised. Authenticity is also connected to trust. How can

applications trust information whose genuineness cannot be verified?

2.1.5.
Non-repudiation

 In law, non-repudiation implies one's intention to fulfill his or hers

obligations in a contract. It also implies that one party of a transaction cannot deny

having received a transaction request nor can the other party deny having sent a

transaction request [
7
].

It is important to note that while technology, such as cryptographic systems,

can assist in non-repudiation efforts; the concept is, at its core, a legal concept

transcending the realm of technology. It is not, for instance, sufficient to show that

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

18

the message matches a digital signature signed with the sender's private key, and

thus only the sender could have sent the message and nobody else could have

altered it in transit. The alleged sender could in return demonstrate that the digital

signature algorithm is vulnerable or flawed, or allege and prove that his signing

key has been compromised. The fault for these violations may or may not lie with

the sender himself, and such assertions may or may not relieve the sender of

liability, but the assertion would invalidate the claim that the signature necessarily

proves authenticity and integrity and thus prevents repudiation.

2.2.
Access Control

Access control is the selective restriction of access to resources. The act of

accessing may mean consuming, inspecting, or using. Permission to access a

resource is called authorization [
8
]. Access Control is the combination of a set of

permissions, usually called Access Control Lists (ACL) with the act of

authentication. The most secure systems are the ones that authenticate users

enforcing the triad [
9
]: What you know, What you have and Who you are.

Access Control Lists are implemented based on the following strategies [
10

]:

Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-

Based Access Control (RBAC)

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

19

3
Cryptography and Attacks on Authentication

The word Cryptography comes from the Greek words kryptós (hidden) and

gráphein (to write) [
11

]. Cryptography is used to protect sensitive or secret data in

a way that un-authorized people or computerized systems are unable to understand

or make use of the data. In Computer Science, Cryptography works in 3 steps [
12

]:

Encryption: the process to cipher the original message. The message could be

plain text, an image, a stream of bits, voice data or any form binary data. The

Ciphered message C is obtained by applying the function E on the original

message M.

C = E(M)

 Transmission of the ciphered message

 Decryption: the process to decipher the ciphered message back to the

original message. The original message M is obtaining by applying the

function D on the ciphered message C

M = D(C)

Figure 1 - Encrypting and Decrypting

Cryptography performs major roles in information security. It helps to

enforce Confidentiality, Integrity, Authenticity and Non-Repudiation.

The Mechanics of Cryptography involves a sender (Alice), a receiver (Bob)

and sometimes a trusted third party (Trent) [
13

]. There are cryptographic

algorithms that involve more parties.

It is important to define two other characters involved in attacks, meaning

unauthorized people trying to gain access to private, sensitive or secret

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

20

information. These characters are: The eavesdropper (Eve) and the malicious

active attacker (Mallory). We must always assume that the Eve has the ability to

monitor any messages transmitted by Alice and Bob. Eve is the passive attacker.

Figure 2 – The eavesdropper

Active attacks, on the other hand, can have much more diverse objectives.

The attacker could be interested in obtaining information, degrading system

performance, corrupting existing information, or gaining unauthorized access to

resources. Active attacks are much more serious, especially in protocols in which

the different parties don’t necessarily trust one another. The attacker does not have

to be a complete outsider. She/he could be a legitimate system user or the system

administrator. There could even be many active attackers working together. Here,

the role of the malicious active attacker will be played by Mallory. It is also

possible that the attacker could be one of the parties involved in the protocol. He

may lie during the protocol or not follow the protocol at all. This type of attacker

is called a cheater. Passive cheaters follow the protocol, but try to obtain more

information than the protocol intends them to. Active cheaters disrupt the protocol

in progress in an attempt to cheat [
14

].

In order to ensure communications privacy, active attacks must be mitigated.

One of the most difficult types of attack to mitigate is the Man in the middle

attack. In this type of attack, Mallory disrupt the communications channel,

positioning himself between Alice and Bob in a way they fail to notice him and

think they still have a direct link between themselves.

Figure 3 – Man in the middle attack

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

21

3.1.
Algorithms and Keys

Since Encryption and Decryption are functions, they are based on an

algorithm. If the security is based on the algorithm, then the algorithm must be

kept secret at all costs. If it leaks, everybody that uses the algorithm needs to

change it. The solution to this problem is the use of public but strong

cryptographic algorithms that use one or more keys to encrypt and decrypt

messages. If the keys are compromised, the parties involved just need to change

the keys, maintaining the algorithm. When an algorithm uses keys, the encryption

and decryption functions are expressed C=EK(M) and M=DK(C), respectively,

such that DK(EK(M))=M holds [
15

]. Security is based in the size and complexity of

the key (the longer and the more complex the better) and the complexity of the

algorithm (usually, the more complex the better). Complexity of the algorithm

increases the difficulty to write another algorithm capable of decrypting the

ciphered message or capable of deducing the encryption key. Complexity of the

key increases the difficulty to guess the key in a brute force attack.´

3.2.
Symmetric Algorithms

Algorithms that use the same key to encrypt and decrypt messages are called

symmetric algorithms. Alice and Bob must agree on a single encryption and

decryption key which would be use by both [
16

].

The problem with symmetric algorithms is how Alice and Bob negotiate a

session key (a symmetric key used in one communications session) in an

unsecured channel. Unless they agree to meet in person and negotiate the key,

there’s always the possibility Eve listens to the key negotiation and renders the

encryption process useless. On the other hand, Mallory can do much worst.

Mallory can negotiate a session key with Alice and another with Bob. Then, he

can decrypt Alice’s message, forge another message and send it to Bob. Bob

thinks he received an authentic message from Alice and Alice doesn’t know Bob

received a false message.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

22

Figure 4 – Symmetric Encryption

3.3.
Asymmetric Algorithms

Algorithms that use different encryption and decryption keys such that even

in possession of one of the keys one cannot calculate the second in a reasonable

amount of time are called asymmetric algorithms. One of the keys is the public

key that can be widely distributed. The other key is the private key known only by

its owner. Messages encrypted with the public key (Puk) can only be decrypted by

the private key (PrK) and vice-versa.

Figure 5 – Asymmetric Encryption

3.4.
Digital Signatures

A digital signature is an algorithm designed to validate the authenticity of a

digital message. A valid digital signature gives the recipient reason to believe the

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

23

message the have not been modified while in transit, enforcing Integrity. If the

digital signature is bound to an unique person or organization the recipient has

reason to believe the message was created by a known sender, such that the sender

cannot deny having sent the message, enforcing both non-repudiation and

authentication. One way hash algorithms is a good way to provide integrity. If

Alice sends a message to Bob with a SHA-128 hash attached to the message and

the message is tampered while in transit Bob will calculate the SHA-128 hash of

the received message and it will not match the SHA-128 hash supplied by Alice.

However, a one-way hash algorithm does not enforce non-repudiation or

authentication. If Alice generates a SHA-128 hash and encrypts the SHA-128

hash with her private key, Alice provides authentication and non repudiation,

because the hash can only be decrypted with Alice’s public key and compared

with a new hash computed, using the received message. If they don’t match, either

the message lost integrity during transmission or it was tampered by an attacker.

However, if they match indeed, the message is authentic and non-repudiation is

assured, because the hash signed with Alice’s private key can only be correctly

verified by using Alice’s public key [
17

].

Figure 6 – Creating a digital signature

Figure 7 – Verifying a digital signature

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

24

3.5.
The Diffie-Hellman Key Exchange Cryptosystem

The Diffie-Hellman Key Exchange Cryptosystem (DHKX) [
III

] allows two

parties that have no prior knowledge of each other to jointly establish a shared

secret key over an insecure communications channel. The shared secret key may

then be used to encrypt messages between the two parties, using a symmetric key

encryption algorithm.

The cryptosystem is based on the discrete logarithm problem [
18

]. The two

parties agree on a large prime number p and a generator g. RFC-2409 enumerates

safe prime numbers and generators that can be used for the DHKX protocol.

Each participant chooses a number (most times a random number) X less than

p to be the private key. If the participants are Alice and Bob, Xa is Alice’s private

key and Xb is Bob’s.

Alice calculates her public key Ya = g
(Xa)

 mod p (1)

Bob calculates his public key Yb = g
(Xb)

 mod p (2)

They transmit their public keys to each other.

Alice calculates the session key Ka = Yb
(Xa)

 mod p

Bob calculates his public key Kb = Ya
(Xb)

 mod p

The keys Ka and Kb match because what Alice and Bob are really calculating

is K = g
(XaXb)

 mod p, but without revealing their private keys to each other.

The proof:

K = Yb
(Xa)

 mod p

K = (g
(Xb)

 mod p)
 (Xa)

 mod p replacing Yb with (2)

K = g
(XaXb)

 mod p by the rules of modular arithmetic

K = (g
(Xa)

 mod p)
(Xb)

 mod p

K = Ya
(Xb)

 mod p replacing (1) with Ya

The security of the Diffie-Hellman key exchange lies in the fact that, while it

is relatively easy to calculate exponentials modulo a prime, it is very difficult to

III

 DIFFIE, Whitfield; HELLMAN Martin. 1976

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

25

calculate discrete logarithms. For large primes, the latter task is considered

infeasible [
19

].

3.6.
The RSA Cryptosystem

The RSA cryptosystem publish by Ron Rivest, Adi Shamir and Len Adleman

in 1978 that can be used for confidentiality, authenticity and non-repudiation [
20

]

[
21

].

Alice’s public and private keys are generated as follows:

First Alice picks up two prime numbers p and q.

She calculates n = p x q and ϕ(n) = (p-1)x(q-1)

She, then chooses a number e relatively prime to ϕ(n)

The public key is n and e

The private key d is calculated such that de ≡ 1 mod ϕ(n).

After the calculations, p and q must be safely discarded.

To encrypt a message M, M is encrypted in blocks, with each block having a

binary value less than n.

The ciphered message C is calculated using the public key. C = M
e
 mod n

The original message M is calculated using the private key. M = C
d
 mod n

To digitally sign a message, guaranteeing authentication and non-repudiation,

Alice uses her private key to encrypt a hash H such that H = h(M) where h is a

hash function.

The digital signature of M is DS = H
d
 mod n (encryption with the private

key)

The original hash can only be restored using the public key. H = DS
e
 mod n.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

26

In order to verify that the message is authentic, that it has not been modified

during transmission (integrity) and that Alice cannot say she didn’t send it (non-

repudiation), the receiver generates the hash of the received message and

compares it with the hash decrypted from the digital signature, using Alice’s

public key. If the hashes match, the message is authentic.

The security of the RSA cryptosystem lies in the fact that it is very difficult to

factor a large compound integer number in its prime factors (The Integer

Factorization Problem).

3.7. Attacks on Authentication Protocols

Authentication protocols should be resilient to the following attacks [
22

]:

3.7.1.
Eavesdropping

Eavesdropping is perhaps the most basic attack on a protocol. Nearly all

protocols address eavesdropping by using encryption. It is obvious that encryption

must be used to protect confidential information such as session keys. In certain

protocols there may be other information that also needs to be protected. An

interesting example is that protocols for key establishment in mobile

communications usually demand that the identity of the mobile station remain

confidential. Eavesdropping is sometimes distinguished as being a passive attack

since it does not require the adversary to disturb the communications of legitimate

principals. The other attacks we consider all require the adversary to be active. It

should be remembered that many sophisticated attacks include eavesdropping of

protocol runs as an essential part.

3.7.2.
Modification

If any protocol message field is not redundant then modification of it is a

potential attack. Use of cryptographic integrity mechanisms is therefore pervasive

in protocols for authentication and key establishment.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

27

Whole messages, as well as individual message fields, are vulnerable to

modification. Many attacks do not alter any known message field at all, but split

and re-assemble fields from different messages. This means the integrity measures

must cover all parts of the message that must be kept together; encryption of these

fields is not enough.

3.7.3.
Replay

Replay attacks include any situation where the adversary interferes with a

protocol run by insertion of a message, or part of a message, that has been sent

previously in any protocol run. We may regard replay as another fundamental type

of attack which is often used in combination with other attack elements. Just as

almost all protocols address eavesdropping and modification attacks by using

cryptography, almost all protocols include elements to address possible replay

attacks.

It is possible for the replayed message in an attack to have been originally

part of a protocol run that happened in the past. Alternatively the replayed

material may be from a protocol run that takes place at the same time as the

attacking run.

3.7.4.
Preplay

Preplay might be regarded as a natural extension of replay, although it is not

clear that this is really an attack that can be useful on its own. It differs from

Replay, because the attacker prepares the attack in advance, carrying out a false

authentication process with the initiating party while pretending to be the

destination party. Phishing Attacks [34] are a form of Preplay Attack.

3.7.5.
Reflection

Reflection is really an important special case of replay. A typical scenario is

where two principals engage in a shared key protocol and one simply returns a

challenge that is intended for itself. This attack may only be possible if parallel

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

28

runs of the same protocol are allowed but this is often a realistic assumption. For

example, if one principal is an Internet host, it may accept sessions from multiple

principals while using the same identity and set of cryptographic keys. The

possibility of instigating several protocol runs simultaneously is another common

and realistic strategy for the adversary.

3.7.6.
Denial of Service

In a denial of service attack (often contracted to DoS attack) the adversary

prevents legitimate users from completing the protocol. Denial of service attacks

in practice take place against servers who are required to interact with many

clients. Attacks can be divided into those that aim to use up the computational

resources of the server (resource depletion attacks) and those that aim to exhaust

the number of allowed connections to the server (connection depletion attacks).

As a matter of principle it seems that it is impossible to prevent denial of

service attacks completely. Any attempt to establish a connection must either

result in allocation of a connection or use some computational work to establish

that the attempt is invalid. Nevertheless there are certain measures that may be

taken to reduce the impact of denial of service attacks and some protocols are

much more vulnerable to this sort of attack than others, so it is important not to

ignore this issue.

3.7.7.
Typing Attacks

When a protocol is written on the page its elements are clearly distinct. But in

practice a principal receiving a message, whether encrypted or not, simply sees a

string of bits which have to be interpreted. Typing attacks exploit this by making a

recipient misinterpret a message, accepting one protocol element as another one

(that is, a message element of a different type). For example, an element which

was intended as a principal identifier could be accepted as a key. Such an attack

typically works through a replay of a previous message.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

29

3.7.8.
Cryptanalysis

Cryptographic algorithms used in protocols are often treated abstractly and

considered immune to cryptanalysis. However, there are some exceptions that

should be mentioned. The most important exception is when it is known that a key

is weak and is (relatively) easy to guess once sufficient evidence in available.

This 'evidence' will normally be a pair of values, one of which is a function of the

key; examples are a plaintext value and the corresponding cipher text, or a

plaintext value and it’s MAC [
IV

].

The most common example of use of a weak key is when the key is formed

from a password that needs to be remembered by a human. In this situation the

effective key length can be estimated from the set of values that are practically

used as passwords, and is certainly much smaller than would be acceptable as the

key length of any modern cryptosystem. A number of protocols have been

designed specifically to hide the evidence needed to guess at weak keys.

3.7.9.
Certificate Manipulation

In public key protocols the certificate of a principal acts as an off-line

assurance from a trusted authority that the principal's public key really does

belong to that principal. Other principals who make use of a certificate are trusting

that the authority has correctly identified the owner of the public key at the time

that the certificate was issued. However, it is not necessarily expected that the

authority is provided with evidence that the corresponding private key is actually

held by the principal claiming ownership of the key pair. This leads to potential

attacks in which the adversary gains a certificate that a public key is its own, even

though it does not know the corresponding private key. By choosing the public

key to be a function of an existing public key some undesirable consequences may

arise.

IV

 Message Authentication Code

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

30

3.7.10.
Protocol Interaction

Most long-term keys are intended to be used for a single protocol. However,

it could be the case that keys are used in multiple protocols. This could be due to

careless design, but may be deliberate in cases where devices with small storage

capability are used for multiple applications (smart cards are the obvious

example).

It is easy to see that protocols designed independently may interact badly. For

example, a protocol that uses decryption to prove possession of an authenticating

key may be used by an adversary to decrypt messages from another protocol if the

same key is used. Kelsey et al. [
V
] give several examples of how things can go

wrong, and discuss the chosen protocol attack in which a new protocol is designed

by the adversary to attack an existing protocol. Apart from limiting keys to be

used in unique protocols, one method to prevent such attacks is to include the

protocol details (such as unique identifier and version number) in an authenticated

part of the protocol messages.

3.8.
Eliminating the Eavesdropper, providing authentication and Non-
repudiation

Although the Diffie-Hellman Key Exchange eliminates the eavesdropper, it

does not provide authentication and non-repudiation, since the private keys are

randomly selected on each authentication. One solution to completely eliminate

Eve’s efforts to gain access to Alice’s messages to Bob and providing

authentication and Non-repudiation using the RSA cryptosystem is specified

below:

 Alice sends her public key to Bob and asks for his.

V
 John Kelsey, Bruce Schneier, and David Wagner. Protocol interactions and

the chosen protocol attack. In B. Christianson et al., editors, Security

Protocols - 5th International Workshop, pages 91-104. Springer-Verlag,

1998. Lecture Notes in Computer Science Volume 1361.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

31

 Bob acknowledges Alice’s request by sending his public key

 Alice generates a one-way hash of the message she intends to send to

Bob and signs it with her private key, creating the digital signature.

 Alice encrypts the both the message and the digital signature with

Bob’s public key, creating the ciphered message, and sends the entire

content to Bob.

 Although Eve has Alice’s and Bob’s public keys and is capable of

copying the ciphered message, she does not know Bob’s private key,

hence she cannot decrypt the ciphered message.

 Bob receives the ciphered message and decrypts it with his private key.

He, then, verifies the digital signature, using Alice’s public key and the

hash of the received message. Because the digital signature can only be

verified using Alice’s public key, the solution guarantees, in respect to

Alice and Eve’s perspective, authentication, integrity, confidentiality

and non-repudiation. It is up to Bob to provide availability.

However, from Mallory’s perspective, the scheme presented will work only if

Alice and Bob have previous knowledge of each others public keys, because

Mallory has the ability to intercept Alice’s and Bob’s public keys and send his

public key to Alice and to Bob. By doing so, he can decrypt Alice’s ciphered

message with his private key, tamper with the message, generate a new hash, sign

the tampered message with his private key, create a new ciphered message with

Bob’s public key and finally send the ciphered message to Bob. If Bob does not

have any means of detecting that Alice’s public key has “changed”, he will think

he has received a genuine message form Alice. In order to mitigate Mallory’s

efforts, a third party, trusted by both Alice and Bob (Trent) must be brought in to

validate Alice’s and Bob’s identities. Trent is referred to as a Certification

Authority in the Public Key Infrastructure (PKI) concept.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

32

3.9.
Public Key Infrastructure (PKI)

Public-key infrastructure is a cryptographic technique that enables users to

securely communicate on an insecure public network, and reliably verify the

identity of a user via digital signatures. [
23

] It is based on the use of asymmetric

encryption algorithms.

A public key certificate (also known as a digital certificate or identity

certificate) is an electronic document, using the X.509 standard that uses a digital

signature to bind a public key with identity information such as the name of a

person or an organization, their address, and so forth. The certificate can be used

to verify that a public key belongs to an individual. [
24

]

Figure 8 – Public Key Infrastructure [

25
]

The steps defined in the figure above are:

1. Public and private keys generation. Bob sends his personal data (name,

country, email and other relevant information) to the CA. The CA uses

an algorithm to generate the key pair.

2. Bob’s information and the public key are registered in a certificate

database

3. The CA digitally signs the certificate with its self issued private key. A

digital certificate containing Bob’s information, Bob’s public key and

the CA digital signature is issued. Bob receives the certificate and his

private key. The private key must be kept secret at all costs, while the

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

33

certificate can be widely distributed. In the example, Bob sends his

certificate to Alice.

4. Alice verifies the authenticity of Bob’s certificate with the CA public

key extracted from the CA digital certificate which must be installed on

Alice’s computer prior to the verification process of Bob’s certificate.

5. Alice uses Bob’s public key (contained in the certificate) to encrypt the

message

6. Bob uses his private key to decrypt Alice’s encrypted message.

A PKI consists of [
26

]:

 A CA that both issues and verifies the digital certificates.

 A registration authority (RA) which verifies the identity of users

requesting information from the CA

 A central directory—i.e. a secure location in which to store and

index keys.

 A certificate management system

 A certificate policy

It is important to mention that a CA issues certificates for itself. By installing

the CA digital certificate on Alice and Bob computers they expressively declare

that they trust the CA. In a PKI scenario, Alice would exchange her digital

certificates which will be verified by the CA. Once she encrypts a message with

Bob’s verified public key, only Bob would be able to decrypt de ciphered

message.

Now, Mallory has a big problem, because it would be very difficult for him to

pose as an authentic CA and RA to both Alice and Bob. Difficult, but not

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

34

impossible. Once Mallory deploys his private PKI, he could deceive Alice and

Bob by employing a strategy such as this:

He must find a way to have his private certification authority certificate

installed on both Alice’s and Bob’s computers. By doing so he will appear as a

trusted CA to Alice and Bob. If he succeeds, he can generate a false digital

certificate to Alice and another to Bob; send Alice’s false certificate to Bob and

Bob’s false certificate to Alice. Since he is positioned between them both, Alice

will think she has a secure channel to Bob and vice-versa.

He should also find a way to fool Alice’s and Bob’s DNS Servers (DNS

Spoofing) or put an entry in Alice’s and Bob’s HOST files, so their machines can

resolve Mallory’s fake full qualified domain name to Mallory’s IP Address.

It is important to mention that when we install an operating system on a

computer, we also install several root certification authority certificates. The same

happens we install a browser that uses its own set of root certification authority

certificates. If Mallory makes his own distribution of an operating system version

and people download and install them on their computers or even mobile devices,

they will be vulnerable to Mallory (See 5.3.1).

3.10.
Single Sign On

As stated in the introduction, Single Sign On (SSO) [
27

] is the ability of a user

to present his credentials only once and gain access to all systems or information

he or she has adequate permissions without being prompted to log in again at each

of these resources.

SSO shares the use of centralized authentication servers which other

applications and systems use for authentication purposes. Once authenticated, the

client application holds the user’s credentials and presents them to any resource

server that requires authentication. The resource server validates the user’s

credentials with the authentication servers. The first and only authentication can

be a user account / password prompt, a digital certificate and a proof of possession

of the corresponding private key or a biometric template.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

35

Figure 9 – Single Sign On

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

36

4
Semantic Web Concepts and Technologies

To achieve the goal of presenting structure data from non structured sources,

a semantic web application makes use of several concepts and technologies, from

which we highlight [
28

]:

 The Resource Description Framework (RDF)

 The RDF Schema (RDFS)

 The Web Ontology Language (OWL)

 The SPARQL Language

 The Linked Data Concept

4.1.
RDF

The Resource Description Framework (RDF) is a general-purpose language

for representing information about resources in the Web [
29

]. It is particularly

intended for representing metadata about Web resources, but it can also be used to

represent information about objects that can be identified on the Web, even when

they cannot be directly retrieved from the Web. To some extent, RDF is a

lightweight ontology language designed to support interoperability between

applications that exchange machine-understandable information on the Web.

The concepts of URI, URI reference, namespace, and qualified name are

fundamental for structuring the Semantic Web as a distributed, federated

information space, because they provide an addressing scheme that is stable,

distributed, and effective.

A resource is anything that has an identity, be it a retrievable digital entity

(such as an electronic document, an image, or a service), a physical entity (such as

a book) or a collection of other resources.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

37

A Uniform Resource Identifier (URI) is a character string that, uniquely,

identifies an abstract or physical resource on the Web.

Examples of URIs following different URI schemes are:

 A URI following the FTP scheme for File Transfer Protocol services:

ftp://ftp.mysite.com/files/foobar.txt

 A URI following the HTTP scheme for Hypertext Transfer Protocol

services: http://www.mysite.com/pub/foobar.html

 A URI following the MAILTO scheme for e-mail addresses:

mailto:em@w3.org

A URI reference (URIref) denotes the common usage of a URI, with an

optional fragment identifier attached to it and preceded by the character “#”.

However, the URI that results from such a reference includes only the URI after

removing the fragment identifier.

Examples of URIrefs are:

 A URIref identifying an individual:

http://www.w3.org/People/EM/contact#me

 A URIref identifying a class (or type)

http://www.w3.org/2000/10/swap/pim/contact#Person

 A URIref identifying a property:

http://www.w3.org/2000/10/swap/pim/contact#mailbox

 A URIref identifying a property value:

http://www.example.org/staffem/85741

An absolute URIref identifies a resource independently of the context in

which the URIref appears. A relative URIref is a URIref with some prefix

omitted; hence, information from the context in which the URIref appears is

ftp://ftp.mysite.com/files/foobar.txt
http://www.mysite.com/pub/foobar.html
mailto:em@w3.org
http://www.w3.org/People/EM/contact#me
http://www.w3.org/2000/10/swap/pim/contact#Person
http://www.w3.org/2000/10/swap/pim/contact#mailbox
http://www.example.org/staffem/85741
DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

38

required to fill in the omitted prefix. In particular, a relative URIref consisting of

just a fragment identifier is equivalent to the URIref of the document in which it

appears, with the fragment identifier appended to it. For example, the relative

URIref #PrivateDoc, appearing in a document identified by the URIref

http://www.cat.com/schema is considered equivalent to the URIref:

http://www.cat.com/schema#PrivateDoc.

An XML namespace, or simply a namespace, is a collection of names. A

namespace is identified by an URIref.

Names from namespaces may appear as qualified names (QNames) of the

form P:L, containing a single colon “:”, that separates the name into a namespace

prefix P and a local part L. The namespace prefix must be associated with a

namespace URIref N in a namespace declaration. We say that the qualified name

represents the absolute URIref constructed by concatenating N and L.

An example of a namespace is RDF http://www.w3.org/1999/02/22-rdf-

syntax-ns# rdf, where the namespace is RDF, the URIref is

http://www.w3.org/1999/02/22-rdf-syntax-ns# and de prefix is rdf.

The QName rdf:description has namespace prefix rdf and local part

description. It expands to the URIref: http://www.w3.org/1999/02/22-rdf-
syntax-ns#description

An RDF statement (or simply a statement) is a triple (S, P, O), where S is a

URIref, called the subject of the statement, P is a URIref, called the property (also

called the predicate) of the statement, that denotes a binary relationship, and O is

either a URIref or a literal, called the object of the statement; if O is a literal, then

O is also called the value of the property P.

4.1.1.
RDF as a Graph

The RDF triples notation translates RDF statements directly into character

strings. More precisely, the RDF triple for an RDF statement (S, P, O) is a string

of one of the two forms:

<S> <P> <O> . if O is an absolute or relative URIref

<S> <P> ″O" . if O is a literal

The RDF triples notation for a set R of RDF statements is simply the

concatenation of the RDF triples that represent each RDF statement in R, in any

order. The RDF graphs notation translates a set of RDF statements into a graph,

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#description
http://www.w3.org/1999/02/22-rdf-syntax-ns#description
DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

39

with nodes representing subjects or objects, and arcs representing properties.

More precisely, the RDF graph for a set R of RDF statements is a labeled graph

where:

The set of nodes of the graph is constructed as follows:

 For each URIref U that occurs as subject or as object of an RDF

statement in R, there is a node in the graph labeled with U ;

 For each literal L that occurs as object of an RDF statement in R, there

is a node in the graph labeled with L ;

These are the only nodes in the graph. The set of arcs of the graph is

constructed as follows:

 For each RDF statement (S, P, O) in R, there is an arc directed from the

nodelabeled with S to the node labeled with O, and the arc is labeled

with P ;

These are the only arcs in the graph.

Only absolute URIrefs are allowed to label nodes and arcs in RDF graphs.

Furthermore, when drawing RDF graphs, nodes labeled with URIrefs are shown

as ellipses, whereas nodes labeled with literals are shown as boxes.

The following figure shows a set of RDF statements and their corresponding

graph [
30

].

Figure 10 – RDF statements and their corresponding graph

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

40

4.2.
SPARQL Language

SPARQL is a recursive acronym for SPARQL Protocol And RDF Query

Language.

SPQRQL is an RDF query language for databases, able to retrieve and

manipulate data stored in RDF format.

In the case of queries that read data from the database, the SPARQL language

specifies four different query variations for different purposes [
31

].

 SELECT query: Used to extract raw values from a SPARQL

endpoint, the results are returned in a table format.

 CONSTRUCT query: Used to extract information from the SPARQL

endpoint and transform the results into valid RDF.

 ASK query: Used to provide a simple True/False result for a query on

a SPARQL endpoint.

 DESCRIBE query: Used to extract an RDF graph from the SPARQL

endpoint, the contents of which is left to the endpoint to decide based

on what the maintainer deems as useful information.

Each of these query forms takes a WHERE block to restrict the query

although in the case of the DESCRIBE query the WHERE is optional.

Below, an example of a SPARQL query that retrieves all names and emails

from a dataset, using the FOAF (Friend Of A Friend) ontology:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email

WHERE {

 ?person a foaf:Person.

 ?person foaf:name ?name.

 ?person foaf:mbox ?email.

}

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

41

4.3.
Linked Data

As mentioned in the introduction section, Linked Data is the ability of

retrieving data form multiple sources, with possibly different formats, in a form

that is transparent to the user.

Tim Berners-Lee outlined four principles of linked data in his Design Issues:

Linked Data note [
32

]:

 Use URIs to denote things.

 Use HTTP URIs so that these things can be referred to and looked up

("dereferenced") by people and user agents.

 When someone looks up a URI, provide useful information, using the

standards (RDF*, SPARQL).

 Include links to other URIs, so that they can discover more things.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

42

5
Authentication Techniques

There are several products and techniques available for authentication, some

of which are specific to the Semantic Web domain. This work focuses on

analyzing the following products and techniques: OpenID, OAuth 2.0, TLS and

WebID (formerly known as FOAF+SSL).

5.1.
OpenID

OpenID is a decentralized mechanism for single sign-on. A user does not

need a password for every resource he/she needs to authenticate. An OpenID is

basically a URI assigned to a unique user. The user can claim ownership of the

URI and can prove that claim. Actually, a XRI (extensible resource identifier) is

used to store the user’s URI and additional information when required [
33

].

OpenID is a standard for authentication. When a server asks for the user’s

credentials for authentication, the user’s sends his/hers URI. The URI will be

validated by the server at a verification authority, the same way a digital

certificate is validated by a CA. The validating server sends a XRI to the

verification authority, which returns another XRI with the result of the validation.

 Unlike Microsoft’s Passport, no company or group owns the standard.

Hence, the standard can be implemented without asking for permission. The user

has the choice to pick up his/hers own OpenID provider.

The problem with OpenID is that it is vulnerable to phishing attacks. OpenID

establishes a shared secret encryption key, using Diffie-Hellman key exchange

protocol. Hence, Eve is not able to retrieve the URI and Mallory efforts to break a

secure communications channel are difficult, although it is feasible to disrupt the

protocol (See 3.4).

A classic phishing attack using e-mail occurs as follows [
34

]:

 Step 1. The phisher sends the potential victim an e-mail that appears to be

from the person’s bank or other organization that would have the victim's personal

information on the user. The phisher carefully uses the colors, graphics, logos and

wording of the existing company.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

43

 Step 2. The potential victim reads the e-mail and takes the bait by

providing the phisher with personal information by either responding to the e-mail

or clicking on a legitimate-looking link and providing the information via a form

on a website that appears to be from the bank or organization in question.

 Step 3. This fake website or e-mail sends the victim’s personal information

directly to the phisher.

If the user goes to a fake website under the pretext of revalidating his/hers

OpenID, the user will give away his/hers URI. Figure 6 illustrates a phishing

attack.

Figure 11 – Phishing Attack

On the other hand, OpenID is as safer as typing an email address and a

password under an unsecure communications channel. Probably more, since the

URI does not disclose password information and travels encrypted.

In regard to a Semantic Web application, OpenID is a good solution. It is

light and the payload to authenticate a user is only a URI which travels encrypted

by symmetric key. Unfortunately, it lacks authenticity and non-repudiation. As

established, the URI may be stolen by a phishing attack. It will authenticate the

real user, instead of the attacker who succeeded in stealing the real user’s URI.

Therefore, the real user might have just cause repudiate the misuse of his/hers

URI.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

44

5.2.
OAuth 2.0

OAuth is an open protocol to allow secure authorization in a simple and

standard method from web, mobile and desktop applications.

The OAuth 2.0 authorization framework enables a third-party application to

obtain limited access to an HTTP service, either on behalf of a resource owner by

orchestrating an approval interaction between the resource owner and the HTTP

service, or by allowing the third-party application to obtain access on its own

behalf [
35

].

OAuth implements RBAC with four defined roles [
36

]:

Resource owner: An entity capable of granting access to a protected resource.

When the resource owner is a person, it is referred to as an end-user.

Resource server: The server hosting the protected resources, capable of

accepting and responding to protected resource requests using access tokens.

Client: An application making requests on protected resource on behalf of its

owner and with the owner’s authorization. The term "client" does not imply any

particular implementation characteristics (e.g., whether the application executes

on a server, a desktop, or other devices).

Authorization server: The server issuing access tokens to the client after

successfully authenticating the resource owner and obtaining authorization.

The primary objective of OAuth is to issue an authorization to an application

to grant access to a resource in behalf of a user without the need of the user’s

password.

The protocol flow is illustrated by the figure bellow

Figure 12 – Oauth 2.0 protocol flow

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

45

The Authorization Server issues temporary credentials to a protected

resource, making OAuth more secure then Open ID. It is far more difficult for

Mallory to disrupt the communications between the four parties involved.

Many social networks like Facebook, Google+, Microsoft Live use OAuth

2.0

The problem with OAuth is that it is, like OpenID, vulnerable to phishing

attacks. Once the resource owner authorizes an access to a protected resource, it

will remain authorized for the client, until the user revokes the authorization. Like

OpenID, OAuth lacks a strong mechanism to ensure authenticity and non-

repudiation.

In the Semantic Web domain, OAuth is slightly slower than Open ID, but is

safer. Figure 13 shows a comparison between OpenID and OAuth.

Figure 13 – OpenId and OAuth comparison [

37
]

Both protocols rely in an Identity Provider. The difference is that OpenID

issues a certificate for every application. OAuth, however, issues a limited scope

token for a single specific application instead.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

46

5.3.
TLS (Transport Layer Security)

TLS is the pinnacle of digital authentication and confidentiality. It uses PKI,

CAs and digital certificates to guarantee authenticity, confidentiality, non-

repudiation and integrity. The certificates are digitally signed by a CA private key

and can only be verified by the CA public key. A forged certificate would fail the

verification process. Before sending any information to Bob, Alice verifies with

the issuing CA public key that Bob’s certificate is authentic. After verifying Bob’s

authenticity, Alice uses Bob’s public key contained in the certificate to negotiate a

session key. Only Bob can decrypt Alice’s message with his private key.

TLS accepts the use of client certificates, making unnecessary to use user

accounts and passwords. If Bob wants to authenticate Alice, she sends her

certificate to Bob and a proof of possession of the private key. Bob verifies the

authenticity of Alice’s certificate and Alice’s proof of possession of the

corresponding private key. Only Alice can use her private key to sign a message,

which is verified by Bob using Alice’s public key [
38

] [
39

].

Figure 14 – Mutual TLS Authentication using client and server certificates

Web Browsers uses TLS to establish a secure channel and the HTTP protocol

message exchange is encrypted with the symmetric session negotiated by TLS.

This communications protocol is known as HTTPS.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

47

To protect the root CA private key, a root CA only issues certificate for

herself and for intermediate CAs. If a root CA private key is compromised, the

entire certificate chain is compromised. However, if an intermediate CA private

key is compromised, only a branch of the certificate chain is compromised.

Although client certificates can be used with TLS, they are seldom used,

since digital certificates are expensive for users and must be renewed every year

or every two years, depending on the issuing CA policy.

TLS is a very mature protocol the evolved from Secure Sockets Layer (SSL).

The problems we face with TLS are its flexibility and its implementations.

In most implementations, TLS authenticates only servers, leaving the client

authentication to a user account / password prompt after the secure channel has

been established.

The flexibility of TLS allows certificate chain errors to be ignored, further

weakening the protocol.

Up to 2011, many libraries did not correctly check the certificate chain [
40

]

[
41

]. Hence, it was possible for a user with the possession of a legitimate

certificate to create another certificate, even if he or she was not an intermediate

CA. The X.509 certificate has a field which specifies if the certificate was issued

for an end user or for an intermediate CA. In the latter case, it also specifies the

maximum number of certificates the intermediate CA is allowed to issue for other

intermediate CAs.

Recently, libraries developed by the Open SSL Foundation

(www.openssl.org), were shipped with the Heartbleed [
42

] bug. The bug is

considered the most significant threat ever, allowing any ordinary user to make

requests that might download recently used passwords and, in many cases, the

private key of the server’s digital certificate. More than half a million sites,

including Facebook’s, Google’s and Bruce Schneier’s own site [ref] were

vulnerable to the bug.

Basically, the attacker would send a request to change the session password,

with a 10 bytes payload, but with a 64K value in length field. The server does not

check if the length field matches the actual payload length but copied and returned

64KB of memory instead. Multiple requests, would copy different 64KB memory

blocks, hence the attacker would be able to copy user accounts, passwords,

session keys (that could be used on a session hijack attack or to eavesdrop and

http://www.openssl.org/
DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

48

decrypt the client-server connection) and ultimately the private key of the server

certificate stored in memory.

Another possible vulnerability of every PKI infrastructure is government

pressure or intrusion on a CA.

Depending on the legislation of a country, a CA could be forced by a court

order to revoke a digital certificate and issue another, in which the private key

would be copied and delivered to law enforcement or security services

institutions. Also, a CA could be invaded by hackers, by national security

agencies or by foreign espionage agencies in order to copy the private key of

every certificate issued by a particular compromised CA from the time of the

successful invasion until the discovery of the invasion. This has happened already,

at least once, on the DigiNotar[
43

] scandal.

5.3.1.
Disrupting TLS

Because TLS uses the PKI, it is vulnerable to false root CA certificates

installed on a client or server computer. The TLS protocol can be configured to

ignore client certificates, accept client certificates (not mandatory) or to request

client certificates (mandatory). According to RFC 5246 [
VI

], authentication can

even be suppressed. In this mode, only the eavesdropper is mitigated.

Usually, TLS is used to authenticate the server only, because of the high

financial cost to acquire digital certificates signed by trusted CAs., so typical users

don’t want to incur in this cost.

An organization can deploy its own PKI infrastructure (See 3.9) and issue

private certificates for servers and clients, but unless the root certification

authority is installed on every computer (client and server) of the organization,

which is precisely what Mallory will try to do, the certificate chain verification

will fail. The figures bellow shows how Mallory could disrupt TLS in a server

only authentication and in a two way authentication.

VI

 Section 1 - Introduction

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

49

Figure 15 – Disrupting TLS in a one way authentication

Figure 16 – Disrupting TLS in a two way authentication

It would depend on how the server uses the certificate for Mallory to be

successful in disrupting a two way TLS authentication. If the server only matches

the Subject structure of the X.509 certificate, the CN (Common Name) field of the

Subject structure, Malory succeeds. However, if the PuK of the certificate is also

matched, Mallory will not succeed. Many libraries only match the subject field,

because the certificate has an expiration date. A renewed certificate would have a

different PuK and, therefore, would require a new registration process. A renewed

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

50

certificate used by a system that does not match the certificate PuK with the user’s

credentials previously registered, would not require a new registration process.

We should notice that the Trusted Third Party (The CA) is not actively

involved in the authentication process. In other words, Alice and Bob do not

communicate with the CA to validate their certificates. The CA participates in

issuing the certificates and signing them with its private key only.

Periodically, Alice and Bob must download certificates revocation lists

(CRL). Certificates are revoked for a variety of reasons and once a certificate is

revoked, it must not be accepted anymore. If Mallory is capable of performing a

successful Distributed Denial of Service (DDoS) attack on a particular CA, he will

halt the CRL traffic. Therefore, revoked certificates might be accepted or, since

the status of the certificate cannot be verified, all authentications of a particular

CA might also halt. CRL are being replaced by the Online Certificate Status

Protocol (OCSP), which is lighter and more efficient the CRL, defined in RFC

6960. Therefore, the network bandwidth is used more efficiently even though it

does not eliminate the risk of a DDoS attack.

HTTPS, where the TLS is most widely used, is vulnerable to 3 other types of

attack [
44

]:

 Packet Injection Attack (could be mitigated by the application)

 Trace Attack (if server supports and enables TRACE command)

 SSLstrip Attack (downgrade from https to http attack)

5.4.
WebID (formerly known as FOAF+SSL)

The WebID protocol mixes a private PKI and the FOAF ontology for

authentication. Users create their own certificates, which are self-signed.

It works as follows: a user's public encryption key is stored in both a

certificate and a remote RDF file stored on a Web server. Additionally, the

certificate is created with the URI for the location of the remote RDF file stored in

the certificate's Subject Alternative Name field. When a user sends a WebID

certificate to a server, the server identifies the remote URI, pulls down the public

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

51

key from that URI, and compares it with the public key in the user's certificate. If

the keys match, the user is authenticated as the entity associated with the (public

key, remote URI) pair described in the certificate. The server can then decide

whether or not to authorize a user based on a set of rules (e.g. an access control

list) [
45

] [
46

].

By using self-signed certificates, WebID provides a trust-based user network

that does not rely on any central authority; hence WebID authenticates a user in a

single connection. The sequence diagram of figure 10 illustrates a successful

WebID authentication:

Figure 17 – WebID Authentication

The steps of the authentication process are [
47

]:

1) Alice's Client must open a TLS (Transport Layer Security) connection with

the server which authenticates itself using well known TLS mechanisms. This

may be done as the first part of an HTTPS connection (HTTP-TLS).

2) Once the TLS connection has been set up, the application protocol

exchange can start. If the protocol is HTTP then the client can request an HTTP

GET, PUT, POST, DELETE, or action on a resource. The Guard can then

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

52

intercept that request and by checking some access control rules determine if the

client needs authentication. We will consider the case here where the client does

need to be authenticated.

3) The Guard must request the client to authenticate itself using public key

cryptography by signing a token with its private key and have the Client send its

Certificate. This has been carefully defined in the TLS protocol and can be

summarized by the following steps:

3.1) The guard requests of the TLS agent that it make a Certificate Request to

the client. The TLS layer does this. Because the WebID protocol does not rely on

Certificate Authorities to verify the contents of the Certificate, the TLS Agent can

ask for any Certificate from the Client. More details in the step Requesting the

Client Certificate (5.4.1)

 3.2) The Client asks Alice to choose a certificate if the choice has not been

automated. We will assume that Alice chooses a WebID Certificate and sends it to

the client.

 3.3) The TLS Agent must verify that the client is indeed in possession of the

private key. What is important here is that the TLS Agent does not need to know

the Issuer of the Certificate, or to have any trust relation with the Issuer. Indeed if

the TLS Layer could verify the signature of the Issuer and trusted the statements it

signed, then step 4 and 5 would not be needed - other than perhaps as a way to

verify that the key was still valid.

3.4) The WebID Certificate is then passed on to the Guard with the proviso

that the WebIDs still needs to be verified.

4) The Guard then must ask the Verification Agent to verify that the WebIDs

do identify the agent who knows the given public key.

 5) The WebID is verified by looking up the definition of the URL at its

canonical location. This can be done by dereferencing it. The Verification Agent

must extract the public key and all the URI entries contained in the Subject

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

53

Alternative Name extension of the WebID Certificate. A WebID Certificate may

contain multiple URI entries which are considered claimed WebIDs at this point,

since they have not been verified. The Verification Agent may verify as many or

as few WebIDs it has time for. It may do it in parallel and asynchronously.

However that is done, a claimed WebID can only be considered verified if the

following steps have been accomplished successfully:

 5.1) If the WebID Verifier does not have an up-to-date version of the WebID

profile in the cache, then it must dereference the WebID using the canonical

method for dereferencing a URL of that scheme. For an https://... WebID this

would be done using the HTTP-TLS protocol.

 5.2) The returned representation is then transformed into an RDF graph as

specified in Processing the WebID Profile step (5.4.2).

 5.3) That graph is then queried as explained in the Verifying the WebID

Claim step (5.4.3). If the query succeeds, then that WebID is verified.

6) With the set of verified WebIDs the Guard can then check its access

control rules using information from the web and other information available to it,

to verify if the referent of the WebID is indeed allowed access to the protected

resource. The exact nature of those Access Control Rules is left for another

specification. Suffice it to say that it can be something as simple as a lookup in a

table.

 7) If access is granted, then the guard can pass on the request to the protected

resource, which can then interact unimpeded with the client.

5.4.1.
Requesting Client Certificates

TLS allows the server to request a Certificate from the Client using the

CertificateRequest message [section 7.4.4] of TLS v1.1 [RFC5246]. Since WebID

TLS authentication does not rely on CA's signing the certificate to verify the

WebID Claims made therein, the Server does not need to restrict the certificate it

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

54

receives by the CA's they were signed by. It can therefore leave the

certificate_authorities field blank in the request.

If the Client does not send a certificate, because either it does not have one or

it does not wish to send one, other authentication procedures can be pursued at the

application layer with protocols such as OpenID, OAuth, BrowserID, etc...

As far as possible it is important for the server to request the client certificate

in WANT mode, not in NEED mode. If the request is made in NEED mode then

connections will be broken off if the client does not send a certificate. This will

break the connection at the application protocol layer, and so will lead to a very

bad user experience. The server should therefore avoid doing this unless it can be

confident that the client has a certificate - which it may be because the client

advertised that in some other way to the server.

5.4.2.
Processing the WebID Profile

The Verification Agent needs to fetch the document, if it does not have a

valid one in cache. The Verification Agent must be able to process documents in

RDF/XML (RDF-SYNTAX-GRAMMAR) and RDFa in XHTML (XHTML-

RDFA). The result of this processing should be a graph of RDF relations that is

queryable.

It is suggested that the Verification Agent should set the Accept-Header to

request application/rdf+xml with a higher priority than text/html and

application/xhtml+xml. The reason is that it is quite likely that many sites will

produce non marked up HTML and leave the graph to the pure rdf formats.

If the Guard wishes to have the most up-to-date Profile document for an

HTTPS URL, it can use the HTTP cache control headers to get the latest versions.

5.4.3.
Verifying the WebID Claim

To check a WebID claim one has to find if the graph returned by the profile

relates the WebID to the Certificate Public Key with the cert:key relation. In other

words one has to check if those statements are present in the graph.

Verifying the WebID Claim with SPARQL:

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

55

Testing for patterns in graphs is what the SPARQL query language is

designed to do (RDF-SPARQL-QUERY). We will first look at how to use this as

it is also the simplest method, and then what some other programmatic options

may be.

Below is the SPARQL Query Template which should be used for an RSA

public key. It contains three variables ?webid, ?mod and ?exp that need to be

replaced by the appropriate values:

PREFIX : <http://www.w3.org/ns/auth/cert#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

ASK {

 ?webid :key [

 :modulus ?mod;

 :exponent ?exp;

] .

}

An ASK query simply returns true or false. If it returns true, then the key was

found in the graph with the proper relation and the claim is verified.

Verifying the WebID claim without SPARQL:

If the RDF library does datatype normalization of all literals before loading

them, then the most efficient way to execute this would be to start by searching

for all triples whose subjects have relation cert:modulus to the literal which in our

example was "cb24ed..."^^xsd:hexBinary. One would then iterate through all the

subjects of the relations that satisfied that condition, which would most likely

never number more than one, and from there filter out all those that were the

object of the cert:modulus relation of the WebID - in the example Alice:me.

Finally one would verify that one of the keys that had satisfied those relations also

had the cert:exponent relation to the number which in the example above is

"65537"^^xsd:integer.

For triples stores that do not normalize literals on loading a graph, the

normalization will need to be done after the query results and before matching

those with the values from the Certificate. Because one could not rely on the

modulus having been normalized, one would have to start with the WebID -

Alice:me and find all it's cert:key relations to objects - which we know to be keys

- and then iterate through each of those keys' modulus and exponent, and verify if

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

56

the normalised version of the value of those relation is equal to the numbers found

in the certificate. If one such key is found then the answer is true, otherwise the

answer will be false [
48

].

5.4.4.
WebID Access Control

When using WebID, Access Control Lists (ACLs) can also be expressed with

semi structured data, employing the ACL vocabulary. Resources, users and group

of users (a group can be a role) are referenced as URIs and one or more acl

properties define the type of access granted to the resource [
49

].

Examples:

@prefix acl: <http://www.w3.org/ns/auth/acl#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

[acl:accessTo <public_resource>; acl:mode acl:Read; acl:agentClass foaf:Agent].

[acl:accessTo <protected_resource>; acl:mode acl:Read, acl:Write; acl:agent

<user#i>].

Servers are required to recognize the class foaf:Agent as the class of all

agents. This indicates that the given access is public. In some cases this will mean

that authentication is therefore not required, and may be skipped. When a resource

is being written, however, it may be necessary to associate the change with some

kind of ID for accountability purposes [
50

].

[acl:accessTo <sensitive_file>; acl:mode acl:Read; acl:agentClass

<http://my.example.net/groups/friends#groupfr>].

[acl:accessTo <sensitive_file>; acl:mode acl:Read, acl:Write; acl:agentClass

<groups/family#groupfa>].

In the example above, the sensitive file may be read by the friends group but

may be read and written by the family group.

<#groupfr> is rdf:type of </user/Bob>, </user/Alice>, </user/charlie>.

<#groupfa> is rdf:type of <../people/don>, <../people/eloise>.

Example of a group or a role definition

The main advantage of using the semi structured data to build ACLs is that

we do not require an LPAD server nor do we need to specify ACLs on a file

server. Likewise, we do not need to create multiple users, roles and rights on

tables or columns on a database server. We do not have to build ACLs on every

server.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

57

Depending on the level of security required, we may build ACLs on a RDF

file or semantic database server, navigate the graph, verify the type of access

granted to a user for the resource servers, get the information from the resource

servers with a single super user account common to all and return the processed

knowledge to the client application.

5.4.5.
WebId Analysis

In comparison to other Semantic Web authentication techniques, WebID is

much safer than OpenID and OAuth. The client certificate ensures authenticity

and a way for non repudiation. Phishing attacks are more difficult for Mallory to

perpetrate, since TLS requires the server to send its certificate, which can be

verified by Alice. The challenge to verify if the client has the possession of the

certificate private key mitigates the theft of client certificates. Even if the

certificate is stolen it cannot be used without its private key. In fact, WebID does

two authentications: the first, occurring during TLS setup, verifies if the client has

the private key of the certificate and the second is done by matching the certificate

public key with the client’s RDF file.

Client certificates are cached for a brief time. As a result, authentications of

cached client certificates can be faster.

At this time, we see two potential problems with WebID:

1) If Mallory is capable of modifying Alice’s RDF file, replacing Alice’s

public key with his own public key from a previously created WebID certificate,

Bob’s Server may authenticate Mallory as if he was Alice.

2) Since anyone may create a WebID certificate, Mallory does not even need

a private PKI and whatever harm Mallory does, it will be logged with Alice’s

URI, not Mallory’s, if he is able to modify Alice’s RDF file.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

58

6
Secure RDF Authentication Protocol (SRAP)

We introduce SRAP as an authentication protocol designed to minimize the

use of widely trusted CAs, diminishing the financial cost of the certificate issued

by CAs, particularly for client authentication. It uses self-signed certificates for

clients and servers, uses the concept of the Web of Trust (WOT) [
VII

] and is

capable of detecting if previously used public keys have changed, indicating a

possible successful earlier intrusion.

Like WebID, SRAP uses semantic web ontologies into its conception. The

URI is also used for unique user identification. But, whereas WebID uses a public

RDF file for client authentication, SRAP uses an RDFK (encrypted and hidden)

file. The location of the RDFK file is not revealed, unless an authentication is

requested. The client reveals his/hers RDFK file only after a successful server

authentication.

The use of a URI to uniquely identify and authenticate a user is a better

choice than the use of the Common Name (CN) field of the X.509 Subject

structure. The latter contains an email address, which cannot be verified during

the authentication process, while the former points to a file that can be

downloaded and can be used to verify both the client and the server’s identities.

6.1.
Architecture of the SRAP protocol

The SRAP protocol consists in five distinctive steps:

1. Establish a presumed secure communications channel (eliminate any

eavesdropper)

2. Verify the server identity (authenticate sever)

3. Verify the client identity (authenticate client)

4. Renegotiate the session key (eliminate MITM)

VII

 ZIMMERMANN, Phil. 1991

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

59

5. Certificate storage

Figure 18 – SRAP Architecture

6.1.1.
Step 1: Establishment of a presumed secure communications
channel

As described in section 3.5, the Diffie-Hellman Key Exchange protocol

allows two parties that have no prior knowledge of each other to jointly establish a

shared secret key over an insecure communications channel. Any eavesdropper

(Eve) is eliminated by this step [
51

].

Figure 19 – Step 1 – Diffie-Hellman key exchange

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

60

Step 2: Server identity verification

Alice downloads Bob’s encrypted RDF file (RDFK) containing information

only for authentication purposes. The encryption uses a symmetric key algorithm

(e.g.: AES-256) and a hash (e.g.: SHA-256) of the entire RDF-XML file plus the

random generated symmetric key. The hash and key are encrypted with Bob’s

Private Key (PrK), which generates a digital signature. The verification and

decryption of the symmetric key is possible only with Bob’s Public key (PuK).

The use of the private key to encrypt the hash and the symmetric encryption key is

intended to provide non-repudiation.

Since any one could find a way to download Bob’s RFDK file, Alice must

verify the authenticity of Bob’s RFDK. The RFDK should either contain a

certificate signed by a trusted CA or, in case Bob already has a web of trust with

other servers, his RFDK file must contain a list of his authentication partners. At

least one of Bob’s authentication partners must have a certificate signed by a CA.

The rest of the partners may have self-signed certificates.

By replicating his RDFK file to other servers, Bob increases the chance Alice

have already authenticated herself with one of Bob’s partners. Alice downloads

the RFDK file from two different locations, matches them and then proceeds with

the challenge. If Alice has not authenticated herself with any of Bob’s partners

that use self-signed certificates, Alice will only accept a partner which uses a

certificate signed by a CA. This partner is the authentication partner of last resort.

The challenge is the proof that Bob has the private key of the presented

certificate. Alice generates a 256 bits long random string and a hash of the

generated string, encrypts them with Bob’s PuK and sends the ciphered message

to Bob. He then uses his PrK to decrypt the message, calculate the hash of the

decrypted random string and match it with the hash sent by Alice. Finally he

returns another hash (e.g.: MD5) of the random string to Alice. Alice calculates

the secondary hash and if it matches the one Bob sent her, Bob is authenticated.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

61

Figure 20 – Step 2 – Server authentication

The authentication partner of last resort has a different sequence as shown in

the figure bellow.

Figure 21 – Authentication Partner of Last Resort (APLR)

The client application must ask for the APLR certificate chain, verify the

entire certificate chain, setup a session encryption key, ask for Bob’s RDFK file,

match Bob’s RDFK with the RDFK received from the APLR and, finally, check a

second digital signature, meaning that the APLR must use its PrK to digitally sign

Bob’s RDFK.

Step 3: Client identity verification

Alice sends the URI of her RDFK file. The 256 bits long random string used

to challenge Bob is used as an auxiliary symmetric key to encrypt her URI and her

self-signed certificate, before they are sent to Bob, which will be encrypted once

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

62

again with the already established session key. This is necessary, because Mallory

could have positioned himself between Alice and Bob. Since he does not have

Bob’s PrK, he cannot know the secondary symmetric key.

Bob will decrypt Alice’s URI and her digital certificate. He will also

download Alice’s RDFK file. He will use her PuK to recover the symmetric key

used to encrypt the RDFK file and then he will challenge her to verify that she

possesses the PrK of the certificate she sent and that matched the data stored in the

RDFK file. The challenge is similar to the one she previously used to challenge

Bob. If the response of the challenge is Ok, Bob can store Alice’s certificate in a

repository. Each certificate is about 1 KB in size. It can be persisted or cached in

main memory. Bob may use any cache management strategy he wants to purge

infrequently used certificates from clients.

Figure 22 – Steps 3 and 4 – Client Authentication and session key renegotiation

Step 4: Session key renegotiation

In order to completely eliminate the MITM, if the authentication is

successful, Alice and Bob reset the DH session key by encrypting Ya with Bob’s

PuK and Yb with Alice’s Puk. Ya and Yb are the public information that Alice

and Bob transmit to each other in order to calculate a common session key. Since

Mallory does not have access to Alice’s and Bob’s PrK, he can no longer maintain

a “secure” connection with Alice and Bob.

An alternative way would be to use each other’s PuK to negotiate half of the

new session encryption key each, so that both endpoints participate in the

generation process of the session encryption key.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

63

For security reasons, the session key and encryption protocol should be

renegotiated periodically or when a certain amount of data have been exchanged

by the parties (whichever occurs first) in order to make as difficult as possible for

a cryptanalyst to be able to “guess” the session encryption key.

Step 5: Certificate storage

If both parties store each other’s verified and authentic certificates, they can

achieve faster authentications in the future by reducing the number of network

operations and the number of asymmetric cryptography computations, since they

are at least a hundred times slower than a hash calculation or a symmetric key

encryption or decryption operation.

By caching certificates, Mallory is forced to devise a way to attack the

server’s or client’s cache. He will try to poison the server’s cache or create false

entries in the client’s certificate repository. Therefore, the cache must be protected

at all costs. Compromising the cache would be as bad as compromising the private

key.

However, because the cache resides inside some computer (either the client’s

or the server’s), it will not be easy for Mallory to achieve his goals. He will need a

“Trojan horse” to open a connection to his computer from Alice’s computer,

download and execute a worm with root or administrative rights in order to

tamper with the cached certificate repository. If he is able to do that, he would

also able to steal the private key of Alice’s certificate, and therefore none of the

proposed protocols in the literature would be any safer.

6.1.2.
Second and subsequent authentications with cached certificates

If both Alice and Bob have each other’s certificates cached, the authentication

is much faster and secure. Since Alice knows Bob’s PuK and Bob knows Alice’s

PuK, all they have to do is to challenge each other to verify they really are who

they claim to be. No RDFK file download is required. The figure below shows the

authentication process.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

64

Figure 23 – Second and subsequent times authentication with enhanced security

Even if Alice’s certificate is no longer in Bob’s cache, the authentication is

faster. Only Alice’s RDFK needs to be downloaded. They start by establishing a

secure channel using the Diffie-Hellman key exchange protocol, and then

challenge each other. If, for some reason the challenge fails, they will know they

were deceived somehow by Mallory, because although Mallory is able to deceive

Alice and Bob, he does not have access to Alice’s and Bob’s private keys. Even if

he is able to produce a false certificate with Alice’s or Bob’s URI and hack every

server containing Alice’s or Bob’s RDFK file, he cannot mimic Alice’s or Bob’s

key pair. Hence, when Alice and Bob try to establish communications with each

other, using their real certificates, they will notice the PuKs are different from the

ones they have in storage. (See 3.8)

This is a feature none of the other authentication protocols studied in this

work have been able to provide until now.

The Diffie-Hellman parameters are slightly different from the first time

authentication. If each PrK is less than the safe prime used for the calculations the

Xa should be Alice’s PrK and Xb should be Bob’s PrK. Otherwise, the Xa or Xb

generated on the first time authentication should be stored with the certificate’s

cache. A final challenge is only necessary to ensure that both endpoints have the

same session key.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

65

6.1.3.
Second and subsequent authentications with fast negotiation option

In order to speed up the authentication process, minimizing even more

network and asymmetric key operations, SRAP has the option of fast negotiation,

if the server agrees.

With Fast Negotiation, the Diffie-Hellman key exchange protocol is not used.

Alice sends her URI and Half of the PRE_SESSION key, encrypted with Bob’s

PuK. Bob decrypts the message, gets Alice’s client certificate from cache,

generates and encrypts the other half of the PRE_SESSION key with Alice’s PuK.

Alice decrypts the other half of the PRE_SESSION key. The entire session key is

the hash of the concatenation of both halves of the PRE_SESSION key (Alice’s

first and Bob’s second). The only way the session encryption key is identical for

both sides is if both sides have valid certificates previously cached. The challenge

is simply the hash of Alice’s URI, encrypted with the session symmetric key.

Since Bob already knows Alice’s URI, ha can calculate the hash and match with

the decrypted hash transmitted by Alice.

Figure 24 – SRAP with Fast Negotiation

6.2.
RDFK Details

An RDFK file must have encrypted information about the URI of the server

(Server RDFK) or the client profile (Client RFDK), the public key of the self-

signed certificate, the authentication partner list and the digital signature field

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

66

encrypted with the private key of the certificate. The RDFK stored in the

authentication partner of last resort, must have an additional signature, signed with

the private key of the certificate of the authentication partner of last resort, which

must be issued by a trusted certificate authority.

The digital signature field contains two 32 bytes (256 bits) strings: the hash of

the RDFK file and the password used to encrypt the RDFK file. The entire field

must be signed with the RSA private key.

The digital signature of the authentication partner of last resort must only

return true or false for verification purposes.

Since the RSA and CERT ontologies do not have all the properties required

to implement SRAP, an SRAP ontology, which extends the CERT ontology, must

be specified. The following properties are needed:

 SRAPEncryptedURI: points to another property that contains the

server’s or the client profile encrypted URI.

 encryptedAES256String: contains a string encrypted with the AES256

– CBC symmetric key algorithm

 CBCInitializationVector: contains a 16bytes hexadecimal number

with the initialization vector for the AES-CBC algorithm.

 encryptedBlowfish256String: contains a string encrypted with the

Blowfish symmetric key algorithm with a 256 bits key.

 encryptedSerpent256String: contains a string encrypted with the

Serpent 256 symmetric key algorithm.

 SRAPEncryptedAuthenticationPartnersList: points to another property

that contains the server’s encrypted authentication partners list.

 SRAPDigitalSignature: points to a SRAPEncryptedSignature property

that contains the encrypted hash and password of the RDFK file.

 SRAPEncryptedSignature: contains a 512 bit hexadecimal number

containing 256 bits a SHA-256 hash and 256 bits, representing the

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

67

256 bit long password for the RDFK file. Both fields must be

encrypted with a RSA private key to ensure non-repudiation.

 SRAPPartnerOfLastResortDigitalSignature: points to another property

that contains the digital signature of the authentication partner of last

resort.

 SRAPRSASignature: contains a hexadecimal number corresponding

to the digital signature of the authentication partner of last resort,

using the RSA algorithm

An example of a RDFK file is shown below:

Figure 25 – Example of a RDFK file for a server

6.3.
SRAP Vulnerability Analysis

The first step of SRAP is to establish a secure communications channel

between Alice and Bob. This step eliminates Eve but Mallory could establish a

secure communications channel with Alice and another with Bob, without Alice

and Bob noticing. Hence, this step does not protect Alice and Bob from Mallory.

That’s why Bob’s and Alice’s identities must be verified and a second session key

must be negotiated in a way Mallory cannot interfere.

The second step of SRAP is the verification of Bob’s (the Server) identity. In

order to deceive Alice (the client), Mallory must make Alice think he is Bob and

Bob’s Authentication partners (Trent) or he must change Bob’s RDFK stored in

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

68

Trent’s server and make Alice think he is Bob. This is as difficult as it is to exploit

the TLS vulnerability. If Alice has already authenticated herself with one of Bob’s

authentication partners, it would be very difficult for Mallory to deceive Alice,

because she already would have the partner’s certificate cached, whether it is self-

signed or CA signed. Alice will establish a secure connection with a partner’s

verified PuK, which Mallory cannot break.

Mallory has only one chance to deceive Alice. This chance happens on the

first time Alice wants to authenticate herself with Bob. Once Alice successfully

authenticates herself with Bob, she will cache Bob’s validated certificate and will

use it to challenge Bob. Since Mallory does not have Bob’s PrK, there is no way

he can respond to Alice’s challenge. Mallory must find a way to flush Alice’s

certificate storage or hack it. Not an easy thing to do, especially if the storage is

encrypted. With WebID and TLS, it is possible for Mallory to deceive Alice and

Bob without them finding out they were deceived. (See 5.3.1). The same is not

true with SRAP. If Alice is deceived by Mallory and stores Mallory’s certificate

instead of Bob’s, when she indeed connects herself with Bob, Bob will respond

his PrK, which does not match the PuK used in Alice’s challenge. Alice will find

out she was deceived.

The third step of SRAP is the verification of Alice’s (the Client) identity. An

RDF file is a public document, but an RDFK is not. The location of a RDFK file

is not revealed unless authentication is required. Although Alice’s Puk is indeed

public, it is also not distributed or revealed, unless authentication is required. So,

unlike WebID, it would be difficult for Mallory to deceive Bob without deceiving

Alice first. If he is able to deceive Alice, he still needs to hack Alice’s personal

Web server and change Alice’s RDFK file with his own. He cannot alter Alice’s

RDFK because he does not have Alice’s PrK to sign the RDFK file. He must

replace the entire file, unlike WebID, where he needed only to change the

modulus field (the public key) of the file. If he uses his own URI, instead of

Alice’s, to authenticate with Bob then Bob will not recognize him as Alice.

Like WebID, SRAP current specification uses RSA public and private keys

only. TLS, however, can use El-Gamal [
52

], and Elliptic Curve Cryptography

(ECC) [
53

] algorithms as well. ECC keys are smaller and ECC algorithms faster

than RSA equivalents, but RSA is the only cryptosystem that allows encryption

with the PrK (digital signing) and decryption with the PuK (signature

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

69

verification). It is necessary to decrypt the key stored in the

encryptedAES256String, encryptedBlowfish256String or

encryptedSerpent256String properties. Such key is used to decrypt the RDFK

URI, and AP list. Because the key is encrypted with an RSA PrK, it can only be

recovered with the corresponding RSA PuK. That is why he cannot modify

Alice’s RDFK file.

6.3.1.
SRAP Resilience Against Eavesdropping Attacks

The Diffie-Hellman key exchange eliminates any eavesdropper on the first

authentication. On the second and subsequent authentication using Fast

Negotiation, no information is sent unencrypted. Eavesdropping passively does

not achieve any goal for the attacker.

6.3.2.
SRAP Resilience Against Modification Attacks

Modification attacks have the best chance of beating most protocols. In the

case of SRAP, to be successful, a modification attack must first be able to update

the client’s RDFK file as mentioned in section 6.3. A modification attack that

does not alter the client’s RDFK file would authenticate the attacker as himself,

not as the client.

6.3.3.
SRAP Resilience Against Replay, Preplay and Reflection Attacks

Since the challenges are chosen randomly by the challenger, encrypted with

the challenged PuK and the challenged party is required to use his/hers PrK to

answer the challenger correctly, replay attacks will not work.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

70

6.3.4.
SRAP Resilience Against DoS and DDoS Attacks

In our understanding, it is not up to any authentication protocol to provide

resilience against DoS or DDoS attacks. It is up to network engineers and network

designers.

6.3.5.
SRAP Resilience Against Typing Attacks

At this time, it is unclear if typing attacks could be successful against SRAP.

RDFKs are digitally signed and clearly defines the encryption algorithm used to

encrypt the RDFK file. Any attempt to tamper with the RDKF file, while in

transit, would fail.

The second key negotiation would be done using both the client’s and the

server’s PuKs, requiring both PrKs to decrypt the session key negotiation. It is

possible to tamper with the Diffie-Hellman key negotiation, but hardly the second

key.

The second session key is not a long term session key, and should be changed

periodically, making typing attacks even more difficult to succeed.

6.3.6.
SRAP Resilience Against Cryptanalysis Attacks

Since no information ever travels unencrypted, there are no weak keys in

SRAP and the second session key is periodically modified, Cryptanalysis have a

low chance of success against SRAP.

6.3.7.
SRAP Resilience Against Certificate Manipulation

In order for certificate manipulation attacks to work, proof of possession of

the PrKs should not be an issue. SRAP strongly demands the proof of possession

of both client and server PrKs. For the APLR, unlike TLS, SRAP cannot be

configured to ignore certificate chain errors.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

71

6.3.8.
SRAP Resilience Against Protocol Interaction

SRAP is much less flexible than WebID and TLS. Both WebID and TLS

allows cipher suite changes. SRAP does not. Once a cipher suite has been

negotiated, it cannot be changed in the same session. At this time, we see an

implementation error as the only possible way for Protocol Interaction Attacks to

work.

6.4.
SRAP Performance

Since SRAP has not been implemented yet, an analytic study of the

computational costs cannot be made at this time, but they can be estimated on

statistical data, considering the each type of operation involved.

A similar work has been done with KERBEROS [
VIII

] by HARBITTER and

MENASCE [
54

], although in their work, the authors did not consider the network

cost.

When comparing TLS, WebID and SRAP, the following operations

parameters are significant:

 Network Operations: the packet travel time between hosts. In our

analysis, we estimate this based on the average round trip time (RTT)

of several web sites and then divided by 2, so we can estimate the

“average” or “typical” time expended in milliseconds for a network

packet to travel from one host to another (See attachment 1).

 RSA Encryption/Decryption Operations: using Chilkats’ [
IX

]

commercial libraries, we implemented the RSA encryption/decryption

operations and calculated the CPU time in milliseconds each

operation requires.

VIII

 http://web.mit.edu/kerberos/
IX

 Chilkat Software Inc. is a developer of components and libraries for developers worldwide.

http://www.chilkatsoft.com

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

72

 Diffie-Hellman Key Exchange: at first, we implemented in JAVA,

using the big integer class, but Chilkat’s libraries were twice as fast as

JAVA, running in Visual Basic 6 (See attachment 2).

 Symmetric Encryption/Decription Operations: calculated using

Chilkat’s commercial libraries.

 Hash Operations: also calculated using Chilkat’s libraries.

From the experiment, using a Dell® Optiplex® 780 with an Intel® Core2

Duo® CPU @ 2.93GHz and DDR3-1333 RAM (1066MHz FSB), running a 32

bits Microsoft® Windows® 7, we determined the following time values:

Network Operations (No): varies from 5 to 50ms

RSA Private Key Operations (2048 bits) (RSApr): 31ms. The PrK is

used for decryption and for digital signature generation.

RSA Public Key Operations (2048 bits) (RSApu): 1.7ms. The PuK is

used for encryption and for digital signature verification.

Diffie-Hellman Key Exchange (2048 bits) (DH-KX): 63ms for the entire

process.

Symmetric Key Operations (AES 256 bits) (SKo): 0.028ms

Hash Operations (SHA 256) (Ho): 0.020ms

RSA encryption and digital signature verification is significantly faster than

decryption and digital signature generation, because the public key exponent

(commonly 65537) is much smaller than the private key exponent.

The calculated and measured times served as homogenization factors for the

total computational cost. The Diffie-Hellman key exchange takes 7 steps and the

average time of 9ms was used for each step.

The following tables show the breakdown of each protocol in terms of basic

steps, showing for each step, the source (from) and destination (to) in which the

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

73

network packets are transmitted and the quantity of relevant operations to

complete the step.

When the source is the client and the destination is the server, we mean that

the client initializes the step and the server receives some data produced by the

client.

When the source is the server and the destination is the client, we mean that

on an already established TCP connection, the server is the initiating side of the

step and the client receives the data produced by the server.

When the source and destination are the same, we mean that there are

relevant operations other than network operations, executed on either the client or

the server side.

When the source or the destination is an Authentication Partner, it is signaled

as AP.

When the source or the destination is the Client Personal Web Server, it is

signaled as CPWS.

By analyzing the sequence diagram of TLS and referring to RFC 5246 (See

Figure 26), we decomposed the execution of the authentication as a sequence of

steps, as follows:

Step From To No RSApr RSApu DH-KX Ho

TCP Handshake Client Server 3 0 0 0 0

Client Hello Client Server 1 0 0 0 0

Server Hello Server Client 1 0 0 0 0

Server Certificate Chain Server Client 2 0 0 0 0

Server Key-Exchange (RSA) Server Client 0 0 0 0 0

Client Certificate Request Server Client 1 0 0 0 0

Server Hello Done Server Client 1 0 0 0 0

Server Certificate Chain Verification Client Client 0 0 2 0 2

Client Certificate Chain Client Server 2 0 0 0 0

Client Key Exchange Client Server 1 0 1 0 1

Server PRE_MASTER_SECRET Decryption Server Server 0 1 0 0 1
Certificate Verify Client Server 1 1 0 0 1

Client Certificate Chain Verification Server Server 0 0 3 0 2

Master_Secret Computation Server Server 0 0 0 0 1

Master_Secret Computation Client Client 0 0 0 0 1

Finished Client Server 1 0 0 0 0

Finished Server Client 1 0 0 0 0

Total 15 2 6 0 9

TLS with both client and server authentication computational costs

Table 1 – Operations for TLS mutual authentication with client and server certificates

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

74

Figure 26 – TLS Sequence [
55

]

The same table was created for WebID and SRAP, in all possible scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

75

Step From To No RSApr RSApu DH-KX Ho SKo

TCP Handshake Client Server 3 0 0 0 0 0

Client Hello Client Server 1 0 0 0 0 0

Server Hello Server Client 1 0 0 0 0 0

Server Certificate Chain Server Client 2 0 0 0 0 0

Server Key-Exchange (RSA) Server Client 0 0 0 0 0 0

Server Hello Done Server Client 1 0 0 0 0 0

Server Certificate Chain Verification Client Client 0 0 2 0 2 0

Client Key Exchange Client Server 1 0 1 0 1 0

Server PRE_MASTER_SECRET Decryption Server Server 0 1 0 0 1 0

Master_Secret Computation Server Server 0 0 0 0 0 0

Master_Secret Computation Client Client 0 0 0 0 0 0

Finished Client Server 1 0 0 0 0 0

Finished Server Client 1 0 0 0 0 0

SubTotal TLS Light 11 1 3 0 4 0

Client URI Client Server 1 0 0 0 0 2

Client Certificate Request Server Client 1 0 0 0 0 2

Client Certificate e PrK possetion proof Client Server 1 1 0 0 1 2

Certificate Verify Client Server 1 0 1 0 2 2

RDF Download via HTTP Server CPWS 6 0 0 0 0 0

Key Match Server Server 0 0 0 0 0 0

Authorized Server Client 1 0 0 0 0 2

SubTotal RDF Download and verification 11 1 1 0 3 10

Total Cost 22 2 4 0 7 10

WebID Computational Costs, using client certificates GET RDF via HTTP

Table 2 – Operations for WebID fetching client RDF via HTTP

Step From To No RSApr RSApu DH-KX Ho SKo

TCP Handshake Client Server 3 0 0 0 0 0

Client Hello Client Server 1 0 0 0 0 0

Server Hello Server Client 1 0 0 0 0 0

Server Certificate Chain Server Client 2 0 0 0 0 0

Server Key-Exchange (RSA) Server Client 0 0 0 0 0 0

Server Hello Done Server Client 1 0 0 0 0 0

Server Certificate Chain Verification Client Client 0 0 2 0 2 0

Client Key Exchange Client Server 1 0 1 0 1 0

Server PRE_MASTER_SECRET Decryption Server Server 0 1 0 0 1 0

Master_Secret Computation Server Server 0 0 0 0 0 0

Master_Secret Computation Client Client 0 0 0 0 0 0

Finished Client Server 1 0 0 0 0 0

Finished Server Client 1 0 0 0 0 0

SubTotal TLS Light 11 1 3 0 4 0

Client URI Client Server 1 0 0 0 0 2

Client Certificate Request Server Client 1 0 0 0 0 2

Client Certificate e PrK possetion proof Client Server 1 0 1 0 1 2

Certificate Verify Client Server 1 1 0 0 2 2

RDF Download via HTTPS Server CPWS 11 1 3 0 4 2

Key Match Server Server 0 0 0 0 0 0

Authorized Server Client 1 0 0 0 0 2

SubTotal RDF Download and verification 16 2 4 0 7 12

Total Cost 27 3 7 0 11 12

WebID Computational Costs, using client certificates GET RDF via HTTPS

Table 3 – Operations for WebID fetching client RDF via HTTPS

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

76

Step From To No RSApr RSApu DH-KX Ho SKo

TCP Handshake Client Server 3 0 0 0 0 0

Client Hello Client Server 1 0 0 0 0 0

Server Hello Server Client 1 0 0 0 0 0

Server Certificate Chain Server Client 2 0 0 0 0 0

Server Key-Exchange (RSA) Server Client 0 0 0 0 0 0

Server Hello Done Server Client 1 0 0 0 0 0

Server Certificate Chain Verification Client Client 0 0 2 0 2 0

Client Key Exchange Client Server 1 0 1 0 1 0

Server PRE_MASTER_SECRET Decryption Server Server 0 1 0 0 1 0

Master_Secret Computation Server Server 0 0 0 0 0 0

Master_Secret Computation Client Client 0 0 0 0 0 0

Finished Client Server 1 0 0 0 0 0

Finished Server Client 1 0 0 0 0 0

SubTotal TLS Light 11 1 3 0 4 0

Client URI Client Server 1 0 0 0 0 2

Client Certificate Request Server Client 1 0 0 0 0 2

Client Certificate e PrK possetion proof Client Server 1 0 1 0 1 2

Certificate Verify Client Server 1 1 0 0 2 2

Key Match Server Server 0 0 0 0 0 0

Authorized Server Client 1 0 0 0 0 2

SubTotal RDF Download and verification 5 1 1 0 3 10

Total Cost 16 2 4 0 7 10

WebID Computational Costs, using client certificates GET RDF via HTTP

Table 4 – Operations for WebID best case scenario

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

77

Step From To No RSApr RSApu DH-KX Ho SKo

Phase1: Diffie-Hellman Key exchange

TCP Handshake Client Server 3 0 0 0 0 0

Client Hello Client Server 1 0 0 3 1 0

Server Hello Server Client 1 0 0 2 2 0

Calculate K Client Client 2 0 0 1 1 0

Calculate K Server Server 0 0 0 1 1 0

SubTotal Phase1 7 0 0 7 5 0

Phase2: Server Authentication

Request ID Client Server 1 0 0 0 0 1

Send Server Certificate, RDFK & AP List Server Client 2 0 0 0 1 3

Server Verify Client Client 0 0 1 0 2 2

APLR Connect and DH-KX setup Client APLR 7 0 0 7 5 0

GET Certificate Chain Client APLR 1 0 0 0 0 1

SEND Certificate Chain APLR Client 2 0 0 0 0 1

Verify Certificate Chain Client Client 0 0 2 0 2 1

Setup Session Key Client APLR 1 1 1 0 0 1

GET RDFK Client APLR 1 0 0 0 0 1

RDFK Download APLR Client 2 0 0 0 0 1

APLR Verify Client Client 0 0 2 0 0 1

Challenge Server Client Server 1 0 1 0 1 1

Server Response Server Client 1 1 0 0 2 1

Response Check Client Client 0 0 0 0 1 0

SubTotal Phase2 19 2 7 7 14 15

Phase3: Client Authentication

Client URI + Certificate Client Server 1 0 0 0 0 4

HTTP GET URI Client CPWS 4 0 0 0 0 0

RDFK Download via HTTP CPWS Client 1 0 0 0 0 0

Challenge Client Server Client 1 0 1 0 1 2

Client Response Client Server 1 1 0 0 2 2

Response Check Server Server 0 0 0 0 1 0

Rengotiate Session Key Client Server 1 0 1 0 1 1

Renegotiate Session Key Server Server 1 1 0 0 1 1

Go Ahead Server Client 1 0 0 0 0 1

SubTotal RDF Phase3 11 2 2 0 6 11

Total Cost 37 4 9 14 25 26

SRAP Computational Costs, 1st time authentication using AP of Last Resort

Table 5 – Operations for SRAP 1
st
 time authentication, using AP of last resort

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

78

Step From To No RSApr RSApu DH-KX Ho SKo

Phase1: Diffie-Hellman Key exchange

TCP Handshake Client Server 3 0 0 0 0 0

Client Hello Client Server 1 0 0 3 1 0

Server Hello Server Client 1 0 0 2 2 0

Calculate K Client Client 2 0 0 1 1 0

Calculate K Server Server 0 0 0 1 1 0

SubTotal Phase1 7 0 0 7 5 0

Phase2: Server Authentication

Request ID Client Server 1 0 0 0 0 1

Send Server Certificate, RDFK & AP List Server Client 2 0 0 0 1 3

Server Verify Client Client 0 0 2 0 2 2

TCP Handshake Client AP 3 0 0 0 0 0

Session setup Client AP 1 0 1 0 1 0

AP Response AP Client 1 1 0 0 2 1

GET RDFK Client AP 1 0 0 0 1 1

RDFK Download AP Client 2 0 0 0 2 1

AP Verify Client Client 0 0 2 0 3 2

Challenge Server Client Server 1 0 1 0 1 2

Server Response Server Client 1 0 1 0 2 2

Response Check Client Client 0 0 0 0 1 0

SubTotal Phase2 13 1 7 0 16 15

Phase3: Client Authentication

Client URI + Certificate Client Server 1 0 0 0 0 4

HTTP GET URI Client CPWS 4 0 0 0 0 0

RDFK Download via HTTP CPWS Client 1 0 0 0 0 0

Challenge Client Server Client 1 0 1 0 1 2

Client Response Client Server 1 1 0 0 2 2

Response Check Server Server 0 0 0 0 1 0

Rengotiate Session Key Client Server 1 0 1 0 1 1

Renegotiate Session Key Server Server 1 1 0 0 1 1

Go Ahead Server Client 1 0 0 0 0 1

SubTotal RDF Phase3 11 2 2 0 6 11

Total Cost 31 3 9 7 27 26

SRAP Computational Costs, 1st time authentication using Trusted AP

Table 6 – SRAP 1
st
 time authentication using a trusted AP

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

79

Step From To No RSApr RSApu DH-KX Ho SKo

Phase1: Diffie-Hellman Key exchange

TCP Handshake Client Server 3 0 0 0 0 0

Client Challenge Client Server 1 0 1 3 1 1

Calculate K Server Server 0 1 0 1 1 0

Server Response. Certificate not in cache Server Client 1 0 0 2 2 2

Calculate K Client Client 0 0 0 1 1 0

SubTotal Phase1 5 1 1 6 4 3

Phase2: Client Authentication

Client URI + Certificate Client Server 1 0 0 0 0 4

HTTP GET URI Client CPWS 4 0 0 0 0 0

RDFK Download via HTTP CPWS Client 1 0 0 0 0 0

Challenge Client Server Client 1 0 1 0 1 2

Client Response Client Server 1 1 0 0 2 2

Response Check Server Server 0 0 0 0 1 0

Reset Session Key Server Client 1 0 1 2 2 1

Calculate K Client Client 0 1 0 1 1 0

Verify matching session keys Client Server 1 0 0 0 1 1

Authentication Ok, go ahead Server Client 1 0 0 0 1 1

SubTotal RDF Phase2 11 2 2 3 9 11

Total Cost 16 3 3 9 13 14

SRAP Computational Costs, client certificate removed from cache

Table 7 – SRAP authentication with client certificate removed from server cache

Step From To No RSApr RSApu DH-KX Ho SKo

Single Phase

TCP Handshake Client Server 3 0 0 0 0 0

Client Challenge Client Server 1 0 1 2 1 1

Calculate K Server Server 0 1 0 1 1 0

Server Challenge Server Client 1 0 1 1 2 2

Calculate K Client Client 0 1 0 1 1 1

Verify matching session keys Client Server 1 0 0 0 1 1

Authentication Ok, go ahead Server Client 1 0 0 0 1 1

Total Cost 7 2 2 5 7 6

SRAP Computational Costs, certificate in cache Enhanced Security

Table 8 – SRAP 2
nd

 and subsequent authentications, certificate in server cache with

enhanced security option

Step From To No RSApr RSApu DH-KX Ho SKo

Single Phase

TCP Handshake Client Server 3 0 0 0 0 0

Client Challenge Client Server 1 0 1 0 1 1

Server Verification Server Server 0 1 0 0 2 0

Server Challenge Server Client 1 0 1 0 2 2

Client Verification Client Client 0 1 0 0 2 1

Verify matching session keys Client Server 1 0 0 0 1 1

Authentication Ok, go ahead Server Client 1 0 0 0 1 1

Total Cost 7 2 2 0 9 6

SRAP Computational Costs, client certificate in cache - Fast Negotiation

Table 9 – SRAP 2
nd

 and subsequent authentications, certificate in server cache with fast

negotiation option

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

80

Protocol No RSApr RSApu DH-KX Ho SKo

TLS Full 15 2 6 0 9 0

TLS Full with 2 Intermediate CA 17 2 8 0 11 0

WebID RDF Download via HTTP 22 2 4 0 7 10

WebID RDF Download via HTTPS 27 3 7 0 11 12

WebID Client certificate in cache 16 2 4 0 7 10

SRAP 1st time auth AP of Last Resort 37 4 9 14 25 26

SRAP 1st time auth Trusted AP 31 3 9 7 27 26

SRAP 2nd+ time auth client cert not in cache 16 3 3 9 13 14

SRAP 2nd+ time auth Enhanced Security 7 2 2 5 7 6

SRAP 2nd+ time auth Fast Negotiation 7 2 2 0 9 6

Homogenization Factors ms 21 31 1,7 8,9 0,028 0,02

Protocol No RSApr RSApu DH-KX Ho SKo Total Cost

TLS Full 315 62 10,2 0 0,252 0 387

TLS Full with 2 Intermediate CA 357 62 13,6 0 0,308 0 433

WebID RDF Download via HTTP 462 62 6,8 0 0,196 0,2 531

WebID RDF Download via HTTPS 567 93 11,9 0 0,308 0,24 672

WebID Client certificate in cache 336 62 6,8 0 0,196 0,2 405

SRAP 1st time auth AP of Last Resort 777 124 15,3 125 0,7 0,52 1.042

SRAP 1st time auth Trusted AP 651 93 15,3 62 0,756 0,52 823

SRAP 2nd+ time auth client cert not in cache 336 93 5,1 80 0,364 0,28 515

SRAP 2nd+ time auth Enhanced Security 147 62 3,4 45 0,196 0,12 257

SRAP 2nd+ time auth Fast Negotiation 147 62 3,4 0 0,252 0,12 213

TLS, WebID & SRAP Computational Costs Summary

Table 10 – Protocol Summary Table

As seen in Table 5, when using SRAP for the first time in the worst-case

scenario (authenticate the server with the partner of last resort), SRAP has the

worst performance. Nevertheless, as expected, it has the best performance, if the

certificates are cached (Table 9). On the first authentication turn, there is a tradeoff:

we sacrifice CPU and Network (and battery on a mobile device) to be sure we are

communicating with the server we were supposed to be, and not Mallory. But, if

we already have the certificates cached, SRAP can be twice as fast as TLS and

WebID. Since network latency varies, the chart from Figure 27 shows the

performance of the protocols according to different network latency values.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

81

0

500

1.000

1.500

2.000

2.500

10 15 20 25 30 35 40 45 50

Network Latency (ms)

T
o

ta
l

C
o

s
t

TLS Full

TLS Full with 2 Intermediate CA

WebID RDF Download via HTTP

WebID RDF Download via

HTTPS

WebID Client certificate in cache

SRAP 1st time auth AP of Last

Resort

SRAP 1st time auth Trusted AP

SRAP 2nd+ time auth client cert

not in cache

SRAP 2nd+ time auth client cert

in cache Enhanced Security

SRAP 2nd+ time auth client cert

in cache Fast Negotiation

Figure 27 – Protocol performance comparison with multiple network latency times

Besides the first computer, we gather results from two other desktop

computers for comparison:

2) An AMD® Athlon 64 Dual Core 4400+ @ 2,3GHz CPU with 1GB DDR2

800 RAM, running a 32 bits Microsoft® Windows XP® operating system.

For this computer, we have got the following values for the asymmetric

encryption and decryption operations:

RSA Private Key Operations (2048 bits) (RSApr): 55ms.

RSA Public Key Operations (2048 bits) (RSApu): 2.8ms.

Diffie-Hellman Key Exchange (2048 bits) (DH-KX): 109ms for the entire

process.

3) An Intel® Core I7 2600 @ 3,4GHz CPU with 12GB DDR3 1333 RAM,

running a 64 bits Microsoft® Windows 7®

For this computer, we have got the following values for the asymmetric

encryption and decryption operations:

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

82

RSA Private Key Operations (2048 bits) (RSApr): 22ms.

RSA Public Key Operations (2048 bits) (RSApu): 1.1ms.

Diffie-Hellman Key Exchange (2048 bits) (DH-KX): 39ms for the entire

process.

Symmetric key and hashing operations, as seen in Table 10, do not influence

the total cost significantly.

Although the hardware of second computer is outdated for today’s standards,

it gives us the equivalent performance of a mobile phone or tablet. However, the

third computer is considered a top of the line model for today’s standards.

Using the timings as homogenization factors, we have the following

performance tables for computers 2 and 3 respectively.

Protocol No RSApr RSApu DH-KX Ho SKo

TLS Full 15 2 6 0 9 0

TLS Full with 2 Intermediate CA 17 2 8 0 11 0

WebID RDF Download via HTTP 22 2 4 0 7 10

WebID RDF Download via HTTPS 27 3 7 0 11 12

WebID Client certificate in cache 16 2 4 0 7 10

SRAP 1st time auth AP of Last Resort 37 4 9 14 25 26

SRAP 1st time auth Trusted AP 31 3 9 7 27 24

SRAP 2nd+ time auth client cert not in cache 16 3 3 9 13 12

SRAP 2nd+ time auth Enhanced Security 7 2 2 5 7 6

SRAP 2nd+ time auth Fast Negotiation 7 2 2 0 9 6

Homogenization Factors ms 21 55 2,8 15,57 0,028 0,02

Protocol No RSApr RSApu DH-KX Ho SKo Total Cost

TLS Full 315 110 16,8 0 0,252 0 442

TLS Full with 2 Intermediate CA 357 110 22,4 0 0,308 0 490

WebID RDF Download via HTTP 462 110 11,2 0 0,196 0,2 584

WebID RDF Download via HTTPS 567 165 19,6 0 0,308 0,24 752

WebID Client certificate in cache 336 110 11,2 0 0,196 0,2 458

SRAP 1st time auth AP of Last Resort 777 220 25,2 218 0,7 0,52 1.241

SRAP 1st time auth Trusted AP 651 165 25,2 109 0,756 0,48 951

SRAP 2nd+ time auth client cert not in cache 336 165 8,4 140 0,364 0,24 650

SRAP 2nd+ time auth Enhanced Security 147 110 5,6 78 0,196 0,12 341

SRAP 2nd+ time auth Fast Negotiation 147 110 5,6 0 0,252 0,12 263

TLS, WebID & SRAP Computational Costs Summary

Table 11 – Protocol Summary for computer 2

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

83

Protocol No RSApr RSApu DH-KX Ho SKo

TLS Full 15 2 6 0 9 0

TLS Full with 2 Intermediate CA 17 2 8 0 11 0

WebID RDF Download via HTTP 22 2 4 0 7 10

WebID RDF Download via HTTPS 27 3 7 0 11 12

WebID Client certificate in cache 16 2 4 0 7 10

SRAP 1st time auth AP of Last Resort 37 4 9 14 25 26

SRAP 1st time auth Trusted AP 31 3 9 7 27 24

SRAP 2nd+ time auth client cert not in cache 16 3 3 9 13 12

SRAP 2nd+ time auth Enhanced Security 7 2 2 5 7 6

SRAP 2nd+ time auth Fast Negotiation 7 2 2 0 9 6

Homogenization Factors ms 21 22 1,1 5,57 0,028 0,02

Protocol No RSApr RSApu DH-KX Ho SKo Total Cost

TLS Full 315 44 6,6 0 0,252 0 366

TLS Full with 2 Intermediate CA 357 44 8,8 0 0,308 0 410

WebID RDF Download via HTTP 462 44 4,4 0 0,196 0,2 511

WebID RDF Download via HTTPS 567 66 7,7 0 0,308 0,24 641

WebID Client certificate in cache 336 44 4,4 0 0,196 0,2 385

SRAP 1st time auth AP of Last Resort 777 88 9,9 78 0,7 0,52 954

SRAP 1st time auth Trusted AP 651 66 9,9 39 0,756 0,48 767

SRAP 2nd+ time auth client cert not in cache 336 66 3,3 50 0,364 0,24 456

SRAP 2nd+ time auth Enhanced Security 147 44 2,2 28 0,196 0,12 221

SRAP 2nd+ time auth Fast Negotiation 147 44 2,2 0 0,252 0,12 194

TLS, WebID & SRAP Computational Costs Summary

 Table 12 – Protocol Summary for Computer 3

6.5.
SRAP Cost Effectiveness

From the chart on Figure 27, we are able to determine the cost effectiveness

of SRAP in relation to TLS. The chart shows very clearly that the greater the

network latency, the more effective SRAP is in relation to TLS, after the first

authentication. Hence, the higher the network speed, the more effective TLS is.

The cost effectiveness of SRAP must take the highest cost of the first

authentication (which is always higher than TLS), add the cost of the subsequent

authentications (which is always lower than TLS) and determine the breakeven

point where the constant TLS accumulated cost is greater than SRAP.

The simple equation bellow shows us the breakeven point at which SRAP is

more cost effective than TLS.

TLS x n ≤ SRAP(bc) x (n-1) + SRAP(wc)

From which we determine n

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

84

))((

))()((

bcSRAPTLS

bcSRAPwcSRAP
n






Where n is the n
th

 time authentication turn, TLS is the constant cost for each

TLS authentication, SRAP(wc) is the first time authentication turn cost for a worst

case scenario and SRAP(bc) is the second and subsequent authentication turns for

SRAP in a best case scenario, where client and server certificates are cached.

On a 5ms latency network, the threshold for SRAP with enhanced security to

beat TLS is reached. Below that, it would cost more than TLS. It takes 123

authentication turns for SRAP with enhanced security to beat TLS, while it takes

7 turns for SRAP with Fast Negotiation to achieve the same goal.

On a 20ms latency network, SRAP beats TLS with nine authentication turns

when enhanced security is used, but it takes only five turns to beat TLS when fast

negotiation is used.

On a 40ms or worse, latency network, SRAP beats TLS after five

authentications regardless of whether enhanced security or fast negotiation is

used. (See Attachment 1 – Network Operations Report).

Typical latencies for social networks are 43ms. For on-line storage sites such

as github or google drive, the average latency is 53ms. For webmail sites such as

Yahoo or I-Cloud, the average latency is 25ms. For e-commerce sites such as

PayPal, BestBuy or Mercado Livre, the average latency is 57ms. Unfortunately,

we have been unable to test governments and financial institutions sites because

the ones we tried are either are hosted in a cloud or do not respond to ICMP

packets.

The following charts better illustrate SRAP cost effectiveness for various

network latencies for each of the computers.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

85

0

2

4

6

8

10

12

14

16

18

10 15 20 25 30 35 40 45 50

Network Latency (ms)

N
u

m
b

e
r

o
f

A
u

th
e
n

ti
c
a
ti

o
n

s

SRAP 2nd+ time auth client cert in

cache Enhanced Security

SRAP 2nd+ time auth client cert in

cache Fast Negotiation

Figure 28 – SRAP cost effectiveness for computer 1

0

5

10

15

20

25

30

35

40

45

10 15 20 25 30 35 40 45 50

Network Latency (ms)

N
u

m
b

e
r

o
f

A
u

th
e
n

ti
c
a
ti

o
n

s

SRAP 2nd+ time auth client cert in

cache Enhanced Security

SRAP 2nd+ time auth client cert in

cache Fast Negotiation

Figure 29 – SRAP cost effectiveness for computer 2

0

1

2

3

4

5

6

7

8

10 15 20 25 30 35 40 45 50

Network Latency (ms)

N
u

m
b

e
r

o
f

A
u

th
e
n

ti
c
a
ti

o
n

s

SRAP 2nd+ time auth client cert in

cache Enhanced Security

SRAP 2nd+ time auth client cert in

cache Fast Negotiation

Figure 30 – SRAP cost effectiveness for computer 3

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

86

With these numbers, it is fair to assess that SRAP can be more cost effective

than TLS in one day of use with Fast Negotiation. However, with Enhanced

Security, SRAP may not be cost effective when the network latency drops below

10ms.

We can also deduce, from Table 10, Table 11 and Table 12, that it is very

difficult for WebID to outperform TLS. Only with better than 5ms latency

networks or in a LAN, WebID would be cost effective in relation to TLS.

6.6.
SRAP Advantages

Even though SRAP was originally specified for semantic web applications,

its use is not restricted to the semantic web domain.

Mail servers, creating a web of trust, can act as authentication partners for

one another. Once they authenticate themselves and cache their certificates, they

can exchange messages in a far more secure way. If a client authenticates itself

using SRAP, using its mail server, the mail server may use the users’ public key

and a one-time symmetric key password to envelope its messages in a way only it

can decrypt its messages with the user’s private key.

Mobile users can take the advantage of the SRAP protocol, particularly to

save battery, because of the fewer network operations required. Even if the first

authentication actually consumes more battery than TLS or WebID, the

subsequent authentications would be faster and would consume far less battery

than the other protocols would. As shown in session 6.4, the slower the network,

the more SRAP supersedes the other protocols.

Browsers can incorporate SRAP to their security suite of protocols, as an

option to replace TLS on authentication and session encryption key establishment

for HTTPS.

A corporation could deploy SRAP to authenticate customers, employers and

telecommuters, using its servers as authentication partners. The corporation may

generate its own self-signed certificates for its customers, employers and

telecommuters, minimizing costs with certificates and enhancing security.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

87

A cloud computing provider could deploy SRAP on its numerous servers and

make them work as authentication partners. Like corporations, cloud computing

providers may generate self-signed certificate for its users.

Social Networks may use SRAP instead of OAuth. They can also generate

self-signed certificates for their users and any website that wishes to authenticate

its users. Using a social network, it is only necessary to deploy SRAP and use the

Social Network as an authentication partner or authentication partner of last

resort, eliminating the phishing attack OAuth is vulnerable to.

Distributed Databases, especially mutidatabases[
X
] located in different cloud

computing providers, can take a great advantage using SRAP. Considering the

fact the cloud administration is out of the customers’ control, authentication to the

customers’ databases is paramount. With multiple RDBMS (Relational Database

Management Systems), running in different physical locations, each and every

RDBMS can be an SRAP authentication partner. Therefore the web of trust is

built by the servers themselves. Using SRAP, servers can authenticate to servers

to process distributed transactions and client applications can authenticate to

servers to submit transactions and retrieve results.

Governments can use their departments’ public servers as authentication

partners for each other, and thus creating a web of trust among themselves.

Intelligence and military uses for SRAP are also possible, especially because

SRAP is able to tell us if we have been compromised or not. With this

information, any targeted unit may decide whether or not to change compromised

identities or to use the compromised identity to plant disinformation in the

attacker.

X
 Autonomous, distributed and heterogeneous databases

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

88

7
Conclusions and Future Works

The contributions of this work are:

(i) The analysis and comparisons of the most common Semantic Web

authentication techniques and (ii) the proposal of a new, safer and more cost

effective authentication technique. It is hoped that with further study, a more

thorough specification and with the implementation of the SRAP that the

proposed technique become a standard for authentication.

Further studies need to be done on how deploy a web of trust. Authentication

partners RDFK files may change from time to time and will need notification and

synchronization, almost the same way a network with multiple routers using link

state routing protocols does.

A software agent must be specified to query CRLs from trusted certification

authorities, off-line in relation to the authentication process. Therefore, the trusted

certificate chain will always be up to date, when an authentication using a partner

of last resort is required. The same is also valid for compromised private keys of

self-signed certificates.

Tools and frameworks to generate X.509 self-signed certificates, RDFK files

and to implement the SRAP protocol need to be developed.

For mobile networks, an implementation of SRAP that uses UDP instead of

TCP would be better suited.

For maximum security, SRAP could be configured to connect to at least five

authentication partners and require that at least three of them vouch for the server

the client is trying to connect for the first time. Likewise, the client could have a

secondary personal web server, or a secondary URI for his/her RDFK file. This

would mitigate even more Mallory’s efforts to gain access to protected resources.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

89

Attachment 1 – Network Operations Report

Source: www.site24x7.com

Group 1 – Social Networks

Facebook
Domain Name :

www.facebook.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

22137173227371 030 213211 273.27 213252 21

kroY fiN

123213213271 030 7.3127 7.3277 7.3715 7.

 fiflofoY

aClCaC
773770321732. 030 27.3.17 2753152 2703112 270

nflafl

12321377371 030 2312. 23725 231.7 2

eiClrr

7.32223777372 030 51311 513.22 513251 51

 afY arY aClraifoY
liCaan

123213213.2 030 2723..2 2773107 2773277 277

 ,larnoY
yrimClG

1232135237. 030 13702 13757 13717 1

 ,ssaC

12321352371 030 713057 713207 7130.1 71

 fNGfoYaCkCl

7.32223717371 030 2013101 2073075 2013705 201

 CfY uC,nfoY

liCaan
22137173227371 030 2123.55 2173211 2173072 217

lsiCrn

12321377322 030 573077 553777 573177 57

 GalrGoY
a,soiCnaC

2213717321317 030 251377 2513772 2513112 251

Average RTT: 111ms. Average TT: 55.5ms

http://www.site24x7.com/
DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

90

Twitter
Domain Name :

www.twitter.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

2..31.327.32.5 030 73001 73717 7375. 7

kroY fiN

2..327321732.5 030 253725 253277 253775 25

 fiflofoY

aClCaC
2..3273217320 030 7.3112 .73207 523055 52

nflafl

2..327321737 030 2013171 2013127 201317 201

 afY arY aClraifoY

liCaan
2..32732173207 030 277371 2773177 27737.1 277

 CfY uC,nfoY

liCaan
2..327321737 030 2173751 217357. 2173507 217

eiClrr

2..327321732.5 030 2013025 20137.1 2013212 201

 ,larnoY
yrimClG

2..3273217320 030 2073.52 2023002 2073..2 207

 ,ssaC

2..3273217315 030 2123.55 2173.27 2173177 217

 fNGfoYaCkCl

2..31.321031. 030 22237. 22.3.07 2253702 225

 GalrGoY

a,soiCnaC
2..31.321031. 030 777371. 777357. 7773275 777

lsiCrn

2..3273217320 030 2513.71 2573277 2573027 257
Average RTT: 116.92ms. Average TT: 58.46ms

Google
Domain Name :

accounts.google.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

273271370357 030 113.22 1731.5 113707 11

 fiflofoY

aClCaC
2732713277357 030 71352 71312. 773752 77

kroY fiN

27327137.357 030 21372 213722 213721 21

nflafl

22132.7372357 030 23721 2311. 23101 2

eiClrr

22132.7372357 030 213571 213525 21351 21

 CfY uC,nfoY
liCaan

27327137.357 030 2173157 2173227 2173157 217

 afY arY aClraifoY

liCaan
27327132.7357 030 2713272 2773152 2773077 277

 ,larnoY

yrimClG
22132.7320357 030 13.75 73217 73077 7

 fNGfoYaCkCl

22132.7327357 030 123771 703277 1.3201 1.

 ,ssaC

22132.7322357 030 773117 773771 773172 77

lsiCrn

22132.7320357 030 7.3117 213777 22311 22

 GalrGoY
a,soiCnaC

273271371357 030 21132.1 2173722 2113115 211
Average RTT: 55.42ms. Average TT: 27.71ms

Average Group1 TT: 43.06ms

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

91

Group 2: On-Line Storage

GitHub
Domain Name :

www.github.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

2.731037173275 030 713.7. 2237.7 7.3112 7.

 fiflofoY
aClCaC

2.731037173210 030 2.3705 2.32.5 2.3201 2.

kroY fiN

2.731037173212 030 73707 713777 7.3027 7.

nflafl

2.731037173210 030 513527 5.3727 52310. 52

 CfY uC,nfoY

liCaan
2.731037173275 030 21.3172 21.3.7 21.3727 21.

eiClrr

2.73103717327. 030 221370. 2723122 22.3127 22.

 afY arY aClraifoY
liCaan

2.731037173212 030 27.3277 27.3557 27.3502 27.

 ,larnoY
yrimClG

2.73103717327. 030 .5322. .53117 .53712 .5

 ,ssaC

2.731037173212 030 2773771 2753075 277327 277

 fNGfoYaCkCl

2.731037173210 030 771327 71.3777 71131.2 711

 GalrGoY

a,soiCnaC
2.73103717327. 030 727315. 7253.01 7253011 725

lsiCrn

2.731037173212 030 2713517 2753527 27237.. 272
Average RTT: 119.42ms Average TT: 59.71ms

DropBox
Domain Name :

www.dropbox.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

205327032773275 030 13712 73221 13.71 1

kroY fiN

20532703271327 030 213007 253777 27375. 27

 fiflofoY

aClCaC
20532703271370 030 2131.1 213175 213717 21

nflafl

205327032773277 030 2153.11 2713.25 27231 272

eiClrr

20532703271370 030 2173757 2173727 2173152 217

 CfY uC,nfoY
liCaan

20532703271327 030 70.3757 70.3502 70.321 70.

 afY arY aClraifoY

liCaan
20532703271327 030 7073025 7053171 7013051 701

 ,larnoY

yrimClG
205327032773277 030 21237.5 2153712 2123211 212

 ,ssaC

205327032713272 030 7073112 7023257 7073.72 707

lsiCrn

20532703277370 030 7273005 7213217 72731.7 727

 fNGfoYaCkCl

20532703271370 030 27531.7 27.3727 2113722 211

 GalrGoY
a,soiCnaC

20532703277321 030 2153227 2153577 215327 215
Average RTT: 145.42ms. Average TT: 72.71ms

Group2 Average TT (including Google Drive): 53.38ms

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

92

Group 3: Webmail

Yahoo

Domain Name : www.yahoo.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

70732.0317371 030 153227 273725 173072 17

 fiflofoY
aClCaC

.5321.3250327. 030 123717 77372. 123707 12

kroY fiN

.5321.3250327. 030 223125 273077 2737.1 27

nflafl

52377532273252 030 273.72 253122 223175 22

 CfY uC,nfoY

liCaan
700321732213277 030 03707 03275 0372. 2

 afY arY aClraifoY

liCaan
.5321.3250327. 030 2.731. 2..3.11 2.23.57 2.2

eiClrr

52377532773277 030 223721 773221 2.3272 2.

 ,larnoY
yrimClG

52377532273252 030 7132.5 773721 7730.. 77

 fNGfoYaCkCl

2223723777357 030 113122 113122 113711 11

 ,ssaC

.5321.3250327. 030 2713711 211317. 2103577 210

 GalrGoY

a,soiCnaC
70135737273272 030 03125 03712 03721 2

lsiCrn

.5321.3250327. 030 2.03.22 7.2311. 7773517 777

Average RTT: 64.25ms. Average TT: 32.12ms

I-Cloud

Domain Name : www.icloud.com

Location Status IP
Packet

Loss(%)
Min RTT (ms) Max RTT (ms) Avg RTT (ms)

Response

Ti ska)sS)

aCnaofilaC

7132.1317377 030 23175 7305. 23571 2

 fiflofoY

aClCaC
22137773257377 030 037.. 031. 03171 2

kroY fiN

22137773727377 030 703175 7732.7 7237.2 72

nflafl

.132003277377 030 .3022 273271 27302. 27

eiClrr

73703710377 030 223757 223212 223221 22

 CfY uC,nfoY
liCaan

22137773215377 030 23507 53117 53077 5

 afYarY aClraifoY

liCaan
2573713277377 030 210317 2103715 2103122 210

 ,larnoY

yrimClG
2273772327377 030 13727 13125 13715 1

 ,ssaC

713723777377 030 2.3171 57372. 573.27 57

 fNGfoYaCkCl

7137315377 030 73777 7311. 73101 7

lsiCrn

73223717377 030 523757 553777 5235.7 52

 GalrGoY
a,soiCnaC

22137713227377 030 03177 0377 03702 2
Average RTT: 30.25ms. Average TT: 15.12ms

Group3 Average TT (including G-Mail): 24.99ms

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

93

Group 4: E-commerce sites

PayPal
Domain Name :

www.paypal.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

25731232773717 030 13772 132.7 1377. 1

kroY fiN

71373173717 030 723702 773271 773715 77

 fiflofoY

aClCaC
713.3.53717 030 03127 0370. 0315. 2

nflafl

713223.53717 030 223272 223277 22327. 22

 afY arY aClraifoY

liCaan
713700373717 030 2103212 2103.77 2103525 210

eiClrr

7131737773717 030 2237.7 223122 22311 22

 ,larnoY
yrimClG

22737723.53717 030 13725 13571 13117 1

 CfY uC,nfoY
liCaan

7131532253717 030 7352. .317 23215 2

 ,ssaC

71317373717 030 503111 573712 513277 51

 fNGfoYaCkCl

713123573717 030 7322. 73112 73777 7

lsiCrn

7131237773717 030 52371. 523727 523175 52

 GalrGoY

a,soiCnaC
7131232103717 030 0377 03775 03112 2

Average RTT: 30.25ms. Average TT: 15.12ms

BestBuy
Domain Name :

www.bestbuy.com

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

71350373272 030 73207 737.. 7377. 7

 fiflofoY

aClCaC
2573573771375 030 03122 0377 03707 2

kroY fiN

27137173215357 030 703171 723527 703.75 70

nflafl

50321032.1317 030 73152 731.. 73155 7

eiClrr

.035731.3.. 030 231.1 73171 23..2 2

 afY arY aClraifoY
liCaan

71371371315 030 2273117 2273172 2273777 227

 CfY uC,nfoY

liCaan
2737773727371 030 037.7 03772 03122 2

 ,larnoY

yrimClG
22320.32223202 030 7301. 23275 7377 7

 ,ssaC

71313.0355 030 2132.1 573257 2.3077 2.

 fNGfoYaCkCl

2713173700317 030 73252 7375 73775 7

 GalrGoY
a,soiCnaC

25735737713211 030 03172 03777 03157 2

lsiCrn

7327372.322 030 7.357 203752 203705 20
Average RTT: 24.92ms. Average TT: 12.46ms

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

94

Mercado Livre
Domain Name :

www.mercadolivre.com.br

noitacoL satatS PI
Itiekaa

noSS)%(
TcLanMM (sS) TtRanMM (sS) TTRanMM (sS)

nkSnoLSka

Mcska)sS)

aCnaofilaC

72731132.732. 030 21315 273502 273212 27

kroY fiN

72731132.732. 030 23201 23511 23117 2

 fiflofoY

aClCaC
72731132.732. 030 2.3271 703027 2.3.1 2.

nflafl

72731132.732. 030 223177 253115 2237. 22

 afY arY aClraifoY

liCaan
72731132.732. 030 2713277 2773251 2713.21 271

 CfY uC,nfoY

liCaan
72731132.232. 030 21235.. 2173712 2173712 217

 ,larnoY
yrimClG

72731132.232. 030 207377 201377 207351. 207

 ,ssaC

72731132.732. 030 2773722 272325 2773111 277

lsiCrn

72731132.732. 030 2723727 2753257 2723752 272

 fNGfoYaCkCl

72731132.232. 030 2273.11 707312 25.3575 25.

eiClrr

72731132.232. 030 2023.22 2773717 2223771 222

 GalrGoY

a,soiCnaC
72731132.232. 030 7703702 7723257 7703517 770

Average RTT: 116.25ms. Average TT: 58.12ms

Group 4 Average TT: 57.14ms

Group 4: Financial Institutions (either inside a cloud or do not respond to ICMP)

Group 5: Government Sites (either inside a cloud or do not respond to ICMP)

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

95

Attachment 2 – Source Codes of the Experiments

Diffie-Hellman Experiment

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

96

RSA Encryption and Decryption Experiment

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

97

AES 256 Encryption and Decryption Experiment

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

98

SHA-256 Hash Experiment

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

99

8
Bibliographic References

[
1
] BERNERS-LEE, Tim; HENDLER, James; LASSILA Ora. The Semantic

Web, Scientific American, May 2001, p. 29-37.

[
2
] HEATH Tom; BIZER Christian. Linked Data: Evolving the Web into a

Global Data Space (1st edition) (2011). Synthesis Lectures on the Semantic

Web: Theory and Technology, 1:1, 1-136. Morgan & Claypool.

[
3
] BERNERS-LEE, Tim; CONNOLLY, Dan; Naming and Addressing: URIs,

URLs, ...
Accessed on 05/07/2014

Available at: http://www.w3.org/Addressing/

[
4
] ABITEBOUL, S.; BUNEMAN, P.; SUCIU, D. (2000), Data on the Web:

from relations to semistructured data and XML. Morgan Kaufmann Publishers

Inc. , San Francisco, CA, USA .

[
5
] IETF. RFC1422. Certificate-Based Key Management

Accessed on 28/03/2014

Available at: http://tools.ietf.org/html/rfc1422

[
6
] RUSSEL, Deborah; GANGEMI, G. T. Sr. Computer Security Basics.

O’Reilly & Associates, 1991. p. 9-11

[
7
] STALLINGS, William. Network and Internetwork Security Principles and

Practice. New Jersey: Prentice-Hall, 1995. p. 10

[
8
] STALLINGS, William. Network and Internetwork Security Principles and

Practice. New Jersey: Prentice-Hall, 1995. p. 11

[
9
] VACCA John R. Public key infrastructure: building trusted applications and

Web services. CRC Press LLC (2004) p. 10-11

[10] HAJR,Layla; BA-HMAID Najlaa; Supervised by: Dr. TAHA,Yousri

Database Security Accessed on 06/20/2013.

Available at

http://faculty.ksu.edu.sa/Taha/IS533FemalesSeminarMaterials/DataBase%20Secu

rity.ppt

[11] ASKDEFINE. Etymology of the word cryptography

Accessed on 06/18/2013.

Available at http://cryptography.askdefine.com/

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

100

[
12

] RUSSEL, Deborah; GANGEMI, G. T. Sr. Computer Security Basics.

O’Reilly & Associates, 1991. p. 169-171

[
13

] SCHNEIER, Bruce. Applied Cryptography 2nd edition. John Wiley &

Sons, 1996. p. 33

[
14

] SCHNEIER, Bruce. Applied Cryptography 2nd edition. John Wiley &

Sons, 1996. p. 35

[
15

] SCHNEIER, Bruce. Applied Cryptography 2nd edition. John Wiley &

Sons, 1996. p. 15-16

[
16

] STALLINGS, William. Cryptography and Network Security Principles

and Practice Fifth Edition. New York: Prentice-Hall, 2011. p. 33-35

[
17

] SUBRAMANYA, S.R.; YI Byung K. Digital signatures. IEEE March/April

2006

Accessed on 11/06/2013

Available at

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1649003&queryT

ext%3DS.R.+SUBRAMANYA+AND+BYUNG+K.+YI

[
18

] STALLINGS, William. Cryptography and Network Security Principles

and Practice Fifth Edition. New York: Prentice-Hall, 2011. p. 257-262

[
19

] CAMENISCH, Jan Leonhard. Group Signature Schemes and Payment

Systems Based on the Discrete Logarithm Problem. PhD. Dissertation. 1998.

Swiss Federal Institute Of Technology Zürich. p. 14-15

[
20

] DAHAB, R.; LÓPEZ-HERNÁNDEZ, J.C; Técnicas criptográficas

modernas: algoritmos e protocolos. Instituto de Computação – UNICAMP 2007

pp. 30-31

[
21

] STALLINGS, William. Cryptography and Network Security Principles

and Practice Fifth Edition. New York: Prentice-Hall, 2011. p. 278-282

[
22

] BOYD, Colin; MATHURIA, Anish. Protocols for Authentication and Key

Establishment. Springer-Verlag Berlin Heidelberg, 2003. p 23-31

[
23

] ADAMS, Carlisle; LLOYD, Steve. Understanding PKI: concepts,

standards, and deployment considerations. Addison-Wesley Professional,

2003. pp. 11–15.

[24] MACPHEE, Allan. Understanding Digital Certificates and Wireless

Transport Layer Security (WTLS). 2001.

Accessed on 10/03/2013.

Available at http://www.entrust.net/ssl-resources/pdf/understanding_wtls.pdf

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

101

[25] UGESI. Public Key Infrastructure

Accessed on 06/21/2013.

Available at http://www.cipher.risk.tsukuba.ac.jp/?page_id=609&lang=EN

[
26

] VACCA John R. Public key infrastructure: building trusted applications

and Web services. CRC Press LLC (2004) p. 57-64

[
27

] WANG, Rui; CHEN, Shuo; WANG, XiaoFeng. Signing Me onto Your

Accounts through Facebook and Google: a Traffic-Guided Security Study of

Commercially Deployed Single-Sign-On Web Services
Accessed on: 02/20/2014

Available at: http://research.microsoft.com/pubs/160659/websso-final.pdf

[
28

] SILVA, Fernando de Freitas. Uma nova abordagem de mineração de

repositórios de software utilizando ferramentas da Web Semântica. MsC.

Thesis. 2013. Pontifícia Universidade Católica do Rio de Janeiro, Departamento

de Informática, Rio de Janeiro. Topic 1.1

[
29

] BREITMAN, K; CASANOVA, M.A.; TRUSZKOWSKI, W. Semantic Web:

Concepts, Technologies and Applications. Springer. p. 57-64

[
30

] BREITMAN, K; CASANOVA, M.A.; TRUSZKOWSKI, W. Semantic Web:

Concepts, Technologies and Applications. Springer. p. 65-66

[
31

] SILVA, Fernando de Freitas. Uma nova abordagem de mineração de

repositórios de software utilizando ferramentas da Web Semântica. MsC.

Thesis. 2013. Pontifícia Universidade Católica do Rio de Janeiro, Departamento

de Informática, Rio de Janeiro. Topic 1.1.3

[
32

] BERNERS-LEE, Tim. Linked Data—Design Issues

Accessed on 02/26/2014

Available at http://www.w3.org/DesignIssues/LinkedData.html

[33] RECORDON, David; WILLISON, Simon. OpenID Bootcamp Tutorial

Accessed on 06/27/2013.

Available at http://www.slideshare.net/daveman692/openid-bootcamp-tutorial

[34] WIKIA. Phishing

Accessed on 07/01/2013.

Available at http://itlaw.wikia.com/wiki/Phishing

[
35

] LEIBA, Barry; OAuth Web Authorization Protocol

Accessed on 07/03/2013.

Available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6123701

[
36

] IETF. RFC6749. The OAuth 2.0 Authorization Framework.

Accessed on 07/01/2013.

Available at http://tools.ietf.org/html/rfc6749

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

102

[
37

] WIKIPEDIA; Oauth VS OpenId

Accessed on 07/10/2013

Available at

http://en.wikipedia.org/wiki/File:OpenIDvs.PseudoAuthenticationusingOAuth.svg

[
38

] STALLINGS, William. Cryptography and Network Security Principles

and Practice Fifth Edition. New Jersey: Prentice-Hall, 2011. p. 485-520.

[
39

] IETF. RFC5246. The Transport Layer Security (TLS) Protocol version

1.2

Accessed on 12/10/2013

Available at: http://tools.ietf.org/html/rfc5246

[
40

] MARLINSPIKE, Moxie. New Tricks For Defeating SSL In Practice

Accessed on 06/05/2014

Available at: https://www.blackhat.com/presentations/bh-dc-

09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

[
41

] GREGORIEV, M; IYENGAR, S; JANA, S; ANUBHAI, R; BONEH, D;

SHMATIKOV, V. The Most Dangerous Code in the World:

Validating SSL Certificates in Non-Browser Software
Accessed on 06/05/2014

Available at: http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf

[
42

] SCHNEIER, Bruce. Heratbleed

Accessed on 04/10/2014

Available at https://www.schneier.com/blog/archives/2014/04/heartbleed.html

[
43

] SCHWARTZ, Mathew J. Stolen Digital Certificates Compromised CIA,

MI6, Tor

Accessed on 04/10/2014

Available at http://www.darkreading.com/attacks-and-breaches/stolen-digital-

certificates-compromised-cia-mi6-tor/d/d-id/1099964?

[
44

] ZOLLER, Thierry. TLS / SSLv3 renegotiation vulnerability explained.

Accessed on 10/04/2013.

Available at http://www.g-sec.lu/practicaltls.pdf

[
45

] HOLLENBACH, James; PRESBREY Joe; BERNERS-LEE Tim. Using RDF

Metadata To Enable Access Control on the Social Semantic Web
Accessed on 07/04/2013.

Available at http://dig.csail.mit.edu/2009/Papers/ISWC/rdf-access-

control/paper.pdf

[
46

] W3C. Foaf+ssl

Accessed on 07/04/2013.

Available at http://www.w3.org/wiki/Foaf%2Bssl

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

103

[
47

] W3C. WebID 1.0 (Web Identification and Discovery)

Accessed on 07/04/2013.

Available at http://www.w3.org/2005/Incubator/webid/spec/

[
48

] STORY, Henry; HARBULOT, Bruno; JACOBI, Ian; JONES, Mike.

FOAF+SSL: RESTful Authentication for the Social Web
Accessed on 02/27/2014

Available at http://bblfish.net/tmp/2009/05/spot2009_submission_15.pdf

[
49

] W3C. WebAccessControl

Accessed on 04/02/2014

Available at http://www.w3.org/wiki/WebAccessControl

[
50

] DE ARAÚJO BELCHIOR, Marion; Modelo de Controle de Acesso no

Projeto de Aplicações na Web Semântica. MsC. Thesis. 2013. Pontifícia

Universidade Católica do Rio de Janeiro, Departamento de Informática, Rio de

Janeiro.

[
51

] KAPOOR, Bhushan; PANDYA, Pramod; SHERIF, Joseph S. A security

pillar of privacy, integrity and authenticity of data communication. P.43

Acessed on 10/06/2013

Available at http://www.emeraldinsight.com/0368-492X.htm

[
52

] DAHAB, R.; LÓPEZ-HERNÁNDEZ, J.C; Técnicas criptográficas

modernas: algoritmos e protocolos. Instituto de Computação – UNICAMP 2007

p.32

[
53

] DAHAB, R.; LÓPEZ-HERNÁNDEZ, J.C; Técnicas criptográficas

modernas: algoritmos e protocolos. Instituto de Computação – UNICAMP 2007

p.32

[
54

] HARBITTER, A; MENASCÉ, D.A. A Methodology for Analyzing the

Performance of Authentication Protocols. ACM Trans. Inf. Syst. Secur. 5, 4

(November 2002), 458-491. DOI=10.1145/581271.581275

Accessed on 08/01/2014

Available at http://doi.acm.org/10.1145/581271.581275

[
55

] STALLINGS, William. Cryptography And Network Security Principles

And Practice Fifth Edition. New Jersey: Prentice-Hall, 2011. p 496.

DBD
PUC-Rio - Certificação Digital Nº 1221733/CA

